Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20010, USA.
Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20010, USA.
Nat Commun. 2023 Feb 10;14(1):752. doi: 10.1038/s41467-023-36316-3.
A major challenge in the application of the CRISPR-Cas13d system is to accurately predict its guide-dependent on-target and off-target effect. Here, we perform CRISPR-Cas13d proliferation screens and design a deep learning model, named DeepCas13, to predict the on-target activity from guide sequences and secondary structures. DeepCas13 outperforms existing methods to predict the efficiency of guides targeting both protein-coding and non-coding RNAs. Guides targeting non-essential genes display off-target viability effects, which are closely related to their on-target efficiencies. Choosing proper negative control guides during normalization mitigates the associated false positives in proliferation screens. We apply DeepCas13 to the guides targeting lncRNAs, and identify lncRNAs that affect cell viability and proliferation in multiple cell lines. The higher prediction accuracy of DeepCas13 over existing methods is extensively confirmed via a secondary CRISPR-Cas13d screen and quantitative RT-PCR experiments. DeepCas13 is freely accessible via http://deepcas13.weililab.org .
在 CRISPR-Cas13d 系统的应用中,一个主要的挑战是准确预测其依赖于指导的靶上和靶外效应。在这里,我们进行了 CRISPR-Cas13d 增殖筛选,并设计了一个深度学习模型,命名为 DeepCas13,用于从指导序列和二级结构预测靶上活性。DeepCas13 优于现有的方法,可预测靶向蛋白质编码和非编码 RNA 的指南的效率。靶向非必需基因的指南显示出靶外生存力效应,这与其靶上效率密切相关。在归一化过程中选择适当的阴性对照指南可以减轻增殖筛选中相关的假阳性。我们将 DeepCas13 应用于靶向 lncRNA 的指南,并鉴定出在多种细胞系中影响细胞活力和增殖的 lncRNA。通过二次 CRISPR-Cas13d 筛选和定量 RT-PCR 实验,广泛证实了 DeepCas13 相对于现有方法的更高预测准确性。DeepCas13 可通过 http://deepcas13.weililab.org 免费获得。