School of Computer Science, University College Dublin, Dublin, D4, Ireland.
Department of Theoretical Physics, National University of Ireland, Maynooth, Ireland.
Sci Rep. 2023 Feb 10;13(1):2435. doi: 10.1038/s41598-023-28752-4.
One clear aspect of behaviour in the COVID-19 pandemic has been people's focus on, and response to, reported or observed infection numbers in their community. We describe a simple model of infectious disease spread in a pandemic situation where people's behaviour is influenced by the current risk of infection and where this behavioural response acts homeostatically to return infection risk to a certain preferred level. This homeostatic response is active until approximate herd immunity is reached: in this domain the model predicts that the reproduction rate R will be centred around a median of 1, that proportional change in infection numbers will follow the standard Cauchy distribution with location and scale parameters 0 and 1, and that high infection numbers will follow a power-law frequency distribution with exponent 2. To test these predictions we used worldwide COVID-19 data from 1st February 2020 to 30th June 2022 to calculate [Formula: see text] confidence interval estimates across countries for these R, location, scale and exponent parameters. The resulting median R estimate was [Formula: see text] (predicted value 1) the proportional change location estimate was [Formula: see text] (predicted value 0), the proportional change scale estimate was [Formula: see text] (predicted value 1), and the frequency distribution exponent estimate was [Formula: see text] (predicted value 2); in each case the observed estimate agreed with model predictions.
在 COVID-19 大流行期间,行为的一个明显方面是人们关注并对社区中报告或观察到的感染人数做出反应。我们描述了一种在大流行情况下传染病传播的简单模型,在这种情况下,人们的行为受到当前感染风险的影响,而这种行为反应则起到自衡作用,将感染风险恢复到某个偏好水平。这种自衡反应在接近群体免疫时才会生效:在这个领域,该模型预测繁殖率 R 将集中在 1 的中位数附近,感染人数的比例变化将遵循标准的 Cauchy 分布,位置和规模参数为 0 和 1,而高感染人数将遵循幂律频率分布,指数为 2。为了验证这些预测,我们使用了 2020 年 2 月 1 日至 2022 年 6 月 30 日期间全球 COVID-19 数据,计算了这些 R、位置、比例和指数参数的置信区间估计值。结果表明,R 的中位数估计值为 [Formula: see text](预测值为 1),比例变化位置估计值为 [Formula: see text](预测值为 0),比例变化规模估计值为 [Formula: see text](预测值为 1),频率分布指数估计值为 [Formula: see text](预测值为 2);在每种情况下,观察到的估计值都与模型预测相符。