MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, V94 T9PX, Ireland.
Insight Centre for Data Analytics, Ireland.
Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210120. doi: 10.1098/rsta.2021.0120. Epub 2021 Nov 22.
We describe the population-based susceptible-exposed-infected-removed (SEIR) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying reproduction number) to model the effect of non-pharmaceutical interventions. A crucial technical challenge in applying such models is their accurate calibration to observed data, e.g. to the daily number of confirmed new cases, as the history of the disease strongly affects predictions of future scenarios. We demonstrate an approach based on inversion of the SEIR equations in conjunction with statistical modelling and spline-fitting of the data to produce a robust methodology for calibration of a wide class of models of this type. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.
我们描述了由爱尔兰流行病学建模咨询小组(IEMAG)开发的基于人群的易感-暴露-感染-清除(SEIR)模型,该模型为爱尔兰政府提供 COVID-19 应对措施的建议。该模型假设一个时变的有效接触率(等效地,一个时变的繁殖数)来模拟非药物干预的效果。应用此类模型的一个关键技术挑战是对观测数据(例如,每日确诊新病例数)进行准确校准,因为疾病的历史会强烈影响对未来情况的预测。我们展示了一种基于 SEIR 方程反演结合数据的统计建模和样条拟合的方法,为广泛的此类模型的校准提供了一种稳健的方法。本文是“传染病监测数据科学方法”主题专刊的一部分。