Suppr超能文献

基于深度学习的胸腔积液细胞块全切片图像分类及靶向基因改变预测

Deep Learning-Based Classification and Targeted Gene Alteration Prediction from Pleural Effusion Cell Block Whole-Slide Images.

作者信息

Ren Wenhao, Zhu Yanli, Wang Qian, Jin Haizhu, Guo Yiyi, Lin Dongmei

机构信息

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, China.

出版信息

Cancers (Basel). 2023 Jan 25;15(3):752. doi: 10.3390/cancers15030752.

Abstract

Cytopathological examination is one of the main examinations for pleural effusion, and especially for many patients with advanced cancer, pleural effusion is the only accessible specimen for establishing a pathological diagnosis. The lack of cytopathologists and the high cost of gene detection present opportunities for the application of deep learning. In this retrospective analysis, data representing 1321 consecutive cases of pleural effusion were collected. We trained and evaluated our deep learning model based on several tasks, including the diagnosis of benign and malignant pleural effusion, the identification of the primary location of common metastatic cancer from pleural effusion, and the prediction of genetic alterations associated with targeted therapy. We achieved good results in identifying benign and malignant pleural effusions (0.932 AUC (area under the ROC curve)) and the primary location of common metastatic cancer (0.910 AUC). In addition, we analyzed ten genes related to targeted therapy in specimens and used them to train the model regarding four alteration statuses, which also yielded reasonable results (0.869 AUC for ALK fusion, 0.804 AUC for KRAS mutation, 0.644 AUC for EGFR mutation and 0.774 AUC for NONE alteration). Our research shows the feasibility and benefits of deep learning to assist in cytopathological diagnosis in clinical settings.

摘要

细胞病理学检查是胸腔积液的主要检查方法之一,尤其是对于许多晚期癌症患者,胸腔积液是建立病理诊断的唯一可获取标本。细胞病理学家的短缺以及基因检测的高成本为深度学习的应用提供了契机。在这项回顾性分析中,收集了代表1321例连续胸腔积液病例的数据。我们基于多项任务训练并评估了我们的深度学习模型,包括良性和恶性胸腔积液的诊断、胸腔积液中常见转移性癌症原发部位的识别以及与靶向治疗相关的基因改变的预测。我们在识别良性和恶性胸腔积液(曲线下面积(AUC)为0.932)以及常见转移性癌症的原发部位(AUC为0.910)方面取得了良好结果。此外,我们分析了标本中与靶向治疗相关的十个基因,并使用它们针对四种改变状态训练模型,也取得了合理的结果(ALK融合的AUC为0.869,KRAS突变的AUC为0.804,EGFR突变的AUC为0.644,无改变的AUC为0.774)。我们的研究表明深度学习在临床环境中辅助细胞病理学诊断的可行性和益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8985/9913862/71a3d2f85f58/cancers-15-00752-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验