文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过结合乳房X光照片和医疗健康记录开发基于人工智能的乳腺癌检测模型。

Development of an Artificial Intelligence-Based Breast Cancer Detection Model by Combining Mammograms and Medical Health Records.

作者信息

Trang Nguyen Thi Hoang, Long Khuong Quynh, An Pham Le, Dang Tran Ngoc

机构信息

Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Center for Population Health Science and Data Science, Ha Noi University of Public Health, Ha Noi 100000, Vietnam.

出版信息

Diagnostics (Basel). 2023 Jan 17;13(3):346. doi: 10.3390/diagnostics13030346.


DOI:10.3390/diagnostics13030346
PMID:36766450
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9913958/
Abstract

BACKGROUND: Artificial intelligence (AI)-based computational models that analyze breast cancer have been developed for decades. The present study was implemented to investigate the accuracy and efficiency of combined mammography images and clinical records for breast cancer detection using machine learning and deep learning classifiers. METHODS: This study was verified using 731 images from 357 women who underwent at least one mammogram and had clinical records for at least six months before mammography. The model was trained on mammograms and clinical variables to discriminate benign and malignant lesions. Multiple pre-trained deep CNN models to detect cancer in mammograms, including X-ception, VGG16, ResNet-v2, ResNet50, and CNN3 were employed. Machine learning models were constructed using k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), Artificial Neural Network (ANN), and gradient boosting machine (GBM) in the clinical dataset. RESULTS: The detection performance obtained an accuracy of 84.5% with a specificity of 78.1% at a sensitivity of 89.7% and an AUC of 0.88. When trained on mammography image data alone, the result achieved a slightly lower score than the combined model (accuracy, 72.5% vs. 84.5%, respectively). CONCLUSIONS: A breast cancer-detection model combining machine learning and deep learning models was performed in this study with a satisfactory result, and this model has potential clinical applications.

摘要

背景:基于人工智能(AI)的分析乳腺癌的计算模型已经开发了数十年。本研究旨在使用机器学习和深度学习分类器,研究联合乳腺钼靶图像和临床记录用于乳腺癌检测的准确性和效率。 方法:本研究使用了来自357名女性的731张图像进行验证,这些女性至少进行了一次乳腺钼靶检查,并且在乳腺钼靶检查前至少有六个月的临床记录。该模型在乳腺钼靶图像和临床变量上进行训练,以区分良性和恶性病变。采用了多个预训练的深度卷积神经网络(CNN)模型来检测乳腺钼靶图像中的癌症,包括X-ception、VGG16、ResNet-v2、ResNet50和CNN3。在临床数据集中使用k近邻(KNN)、支持向量机(SVM)、随机森林(RF)、人工神经网络(ANN)和梯度提升机(GBM)构建机器学习模型。 结果:检测性能在灵敏度为89.7%、特异性为78.1%时,准确率达到84.5%,曲线下面积(AUC)为0.88。仅在乳腺钼靶图像数据上进行训练时,结果得分略低于联合模型(准确率分别为72.5%和84.5%)。 结论:本研究中构建了一个结合机器学习和深度学习模型的乳腺癌检测模型,结果令人满意,该模型具有潜在的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/7d53062e8a38/diagnostics-13-00346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/1f6da38f4f97/diagnostics-13-00346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/f85cf045a62d/diagnostics-13-00346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/2c4e3d1b7ce5/diagnostics-13-00346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/6bf9e5288156/diagnostics-13-00346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/7d53062e8a38/diagnostics-13-00346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/1f6da38f4f97/diagnostics-13-00346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/f85cf045a62d/diagnostics-13-00346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/2c4e3d1b7ce5/diagnostics-13-00346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/6bf9e5288156/diagnostics-13-00346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd89/9913958/7d53062e8a38/diagnostics-13-00346-g005.jpg

相似文献

[1]
Development of an Artificial Intelligence-Based Breast Cancer Detection Model by Combining Mammograms and Medical Health Records.

Diagnostics (Basel). 2023-1-17

[2]
Analysis of nailfold capillaroscopy images with artificial intelligence: Data from literature and performance of machine learning and deep learning from images acquired in the SCLEROCAP study.

Microvasc Res. 2025-1

[3]
Automatic Malignant and Benign Skin Cancer Classification Using a Hybrid Deep Learning Approach.

Diagnostics (Basel). 2022-10-12

[4]
Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models.

Asian Pac J Cancer Prev. 2024-3-1

[5]
State-of-the-Art of Breast Cancer Diagnosis in Medical Images via Convolutional Neural Networks (CNNs).

J Healthc Inform Res. 2023-9-10

[6]
Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.

BMC Med Inform Decis Mak. 2022-10-25

[7]
Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.

Curr Med Imaging. 2020

[8]
Improving performance of computer-aided detection scheme by combining results from two machine learning classifiers.

Acad Radiol. 2009-3

[9]
Hybridizing Deep Neural Networks and Machine Learning Models for Aerial Satellite Forest Image Segmentation.

J Imaging. 2024-5-29

[10]
Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms.

Radiology. 2019-6-18

引用本文的文献

[1]
Breast lesion classification via colorized mammograms and transfer learning in a novel CAD framework.

Sci Rep. 2025-7-11

[2]
Approach to a preparation of dataset combining digital mammographic images and patient clinical data from electronic medical records.

Quant Imaging Med Surg. 2025-4-1

[3]
HeartEnsembleNet: An Innovative Hybrid Ensemble Learning Approach for Cardiovascular Risk Prediction.

Healthcare (Basel). 2025-2-26

[4]
Comparative analysis of features and classification techniques in breast cancer detection for Biglycan biomarker images.

Cancer Biomark. 2024

[5]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[6]
A twin convolutional neural network with hybrid binary optimizer for multimodal breast cancer digital image classification.

Sci Rep. 2024-1-6

本文引用的文献

[1]
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning.

Comput Intell Neurosci. 2022

[2]
Breast Cancer Statistics, 2022.

CA Cancer J Clin. 2022-11

[3]
Breast Cancer Detection in Mammography Images Using Deep Convolutional Neural Networks and Fuzzy Ensemble Modeling Techniques.

Diagnostics (Basel). 2022-7-28

[4]
Mammography Image-Based Diagnosis of Breast Cancer Using Machine Learning: A Pilot Study.

Sensors (Basel). 2021-12-28

[5]
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN).

PLoS One. 2021

[6]
Deep Learning for Diagnosis and Classification of Obstructive Sleep Apnea: A Nasal Airflow-Based Multi-Resolution Residual Network.

Nat Sci Sleep. 2021-3-12

[7]
Multi-View Mammographic Density Classification by Dilated and Attention-Guided Residual Learning.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[8]
Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning.

J Med Imaging (Bellingham). 2020-1

[9]
Comparison of Transferred Deep Neural Networks in Ultrasonic Breast Masses Discrimination.

Biomed Res Int. 2018-6-21

[10]
Assessing Breast Cancer Risk with an Artificial Neural Network.

Asian Pac J Cancer Prev. 2018-4-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索