文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习助力乳腺癌诊断:检测与分类技术的新进展。

Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

机构信息

Faculty of Computer Science & Information Technology, The Superior University, Lahore, Pakistan.

Intelligent Data Visual Computing Research (IDVCR), Lahore, Pakistan.

出版信息

PLoS One. 2024 Jul 11;19(7):e0304757. doi: 10.1371/journal.pone.0304757. eCollection 2024.


DOI:10.1371/journal.pone.0304757
PMID:38990817
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11239011/
Abstract

Recent advancements in AI, driven by big data technologies, have reshaped various industries, with a strong focus on data-driven approaches. This has resulted in remarkable progress in fields like computer vision, e-commerce, cybersecurity, and healthcare, primarily fueled by the integration of machine learning and deep learning models. Notably, the intersection of oncology and computer science has given rise to Computer-Aided Diagnosis (CAD) systems, offering vital tools to aid medical professionals in tumor detection, classification, recurrence tracking, and prognosis prediction. Breast cancer, a significant global health concern, is particularly prevalent in Asia due to diverse factors like lifestyle, genetics, environmental exposures, and healthcare accessibility. Early detection through mammography screening is critical, but the accuracy of mammograms can vary due to factors like breast composition and tumor characteristics, leading to potential misdiagnoses. To address this, an innovative CAD system leveraging deep learning and computer vision techniques was introduced. This system enhances breast cancer diagnosis by independently identifying and categorizing breast lesions, segmenting mass lesions, and classifying them based on pathology. Thorough validation using the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) demonstrated the CAD system's exceptional performance, with a 99% success rate in detecting and classifying breast masses. While the accuracy of detection is 98.5%, when segmenting breast masses into separate groups for examination, the method's performance was approximately 95.39%. Upon completing all the analysis, the system's classification phase yielded an overall accuracy of 99.16% for classification. The potential for this integrated framework to outperform current deep learning techniques is proposed, despite potential challenges related to the high number of trainable parameters. Ultimately, this recommended framework offers valuable support to researchers and physicians in breast cancer diagnosis by harnessing cutting-edge AI and image processing technologies, extending recent advances in deep learning to the medical domain.

摘要

最近,人工智能领域取得了一些进展,这得益于大数据技术的发展,人工智能已经重塑了各个行业的格局,这些发展主要集中在数据驱动方法上。这导致了计算机视觉、电子商务、网络安全和医疗保健等领域的显著进展,主要得益于机器学习和深度学习模型的融合。值得注意的是,肿瘤学和计算机科学的交叉已经产生了计算机辅助诊断(CAD)系统,为医学专业人员提供了重要的工具,帮助他们进行肿瘤检测、分类、复发跟踪和预后预测。乳腺癌是一个全球性的健康问题,由于生活方式、遗传、环境暴露和医疗保健可及性等多种因素,在亚洲尤为普遍。通过乳房 X 光筛查进行早期检测至关重要,但由于乳房成分和肿瘤特征等因素,乳房 X 光的准确性可能会有所不同,导致潜在的误诊。为了解决这个问题,引入了一种利用深度学习和计算机视觉技术的创新 CAD 系统。该系统通过独立识别和分类乳腺病变、分割肿块病变并根据病理学对其进行分类,增强了乳腺癌的诊断能力。通过使用数字筛查乳房成像数据库的已编辑子集(CBIS-DDSM)进行了彻底验证,该 CAD 系统的性能非常出色,在检测和分类乳房肿块方面的成功率达到了 99%。虽然检测的准确率为 98.5%,但在将乳房肿块分为单独的组进行检查时,该方法的性能约为 95.39%。完成所有分析后,系统的分类阶段的总体准确率为 99.16%。尽管该方法存在与大量可训练参数相关的潜在挑战,但该集成框架有可能超越当前的深度学习技术。最终,这个推荐的框架通过利用先进的人工智能和图像处理技术,将深度学习的最新进展扩展到医学领域,为乳腺癌诊断的研究人员和医生提供了有价值的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/5d1a5bcbcf67/pone.0304757.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/45edec92e1bf/pone.0304757.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/ef88d74d3a53/pone.0304757.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/a01c4cd2bb33/pone.0304757.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/d1c3027cb053/pone.0304757.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/1a2b7405e70b/pone.0304757.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/201acffe8eed/pone.0304757.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/707134177a12/pone.0304757.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/7ebae556b5ac/pone.0304757.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/fed7fc27d0e7/pone.0304757.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/0853bc6236e8/pone.0304757.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/5d1a5bcbcf67/pone.0304757.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/45edec92e1bf/pone.0304757.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/ef88d74d3a53/pone.0304757.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/a01c4cd2bb33/pone.0304757.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/d1c3027cb053/pone.0304757.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/1a2b7405e70b/pone.0304757.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/201acffe8eed/pone.0304757.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/707134177a12/pone.0304757.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/7ebae556b5ac/pone.0304757.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/fed7fc27d0e7/pone.0304757.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/0853bc6236e8/pone.0304757.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38dd/11239011/5d1a5bcbcf67/pone.0304757.g011.jpg

相似文献

[1]
Deep learning empowered breast cancer diagnosis: Advancements in detection and classification.

PLoS One. 2024

[2]
Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.

Comput Methods Programs Biomed. 2018-1-31

[3]
Detecting and classifying lesions in mammograms with Deep Learning.

Sci Rep. 2018-3-15

[4]
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.

Adv Exp Med Biol. 2020

[5]
A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.

Int J Med Inform. 2018-6-18

[6]
Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms.

Comput Methods Programs Biomed. 2020-11

[7]
Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset.

J Biomed Inform. 2021-1

[8]
Deep Convolutional Neural Networks for breast cancer screening.

Comput Methods Programs Biomed. 2018-1-11

[9]
An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks.

Sci Rep. 2022-7-18

[10]
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.

Sci Rep. 2019-8-29

引用本文的文献

[1]
MSPO: A machine learning hyperparameter optimization method for enhanced breast cancer image classification.

Digit Health. 2025-7-20

[2]
Nigeria's 6-year (2018-2023) stage distribution of breast cancer at diagnosis: a systematic review and meta-analysis.

Ecancermedicalscience. 2025-4-25

[3]
Margin weighted robust discriminant score for feature selection in imbalanced gene expression classification.

PLoS One. 2025-6-10

[4]
Research status and progress of deep learning in automatic esophageal cancer detection.

World J Gastrointest Oncol. 2025-5-15

[5]
Hybrid convolutional neural network and bi-LSTM model with EfficientNet-B0 for high-accuracy breast cancer detection and classification.

Sci Rep. 2025-4-9

[6]
Enhanced Multi-Class Breast Cancer Classification from Whole-Slide Histopathology Images Using a Proposed Deep Learning Model.

Diagnostics (Basel). 2025-2-27

[7]
Enhancing surface detection: A comprehensive analysis of various YOLO models.

Heliyon. 2025-2-4

[8]
Machine learning prediction of breast cancer local recurrence localization, and distant metastasis after local recurrences.

Sci Rep. 2025-2-10

[9]
Automated karyogram analysis for early detection of genetic and neurodegenerative disorders: a hybrid machine learning approach.

Front Comput Neurosci. 2025-1-22

[10]
Research trends on AI in breast cancer diagnosis, and treatment over two decades.

Discov Oncol. 2024-12-18

本文引用的文献

[1]
Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network.

Comput Intell Neurosci. 2023

[2]
Efficient breast cancer mammograms diagnosis using three deep neural networks and term variance.

Sci Rep. 2023-2-15

[3]
Development of an Artificial Intelligence-Based Breast Cancer Detection Model by Combining Mammograms and Medical Health Records.

Diagnostics (Basel). 2023-1-17

[4]
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach.

Front Genet. 2023-1-4

[5]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[6]
Automatic mass detection in mammograms using deep convolutional neural networks.

J Med Imaging (Bellingham). 2019-7

[7]
Automated Breast Cancer Detection Models Based on Transfer Learning.

Sensors (Basel). 2022-1-24

[8]
Boosted EfficientNet: Detection of Lymph Node Metastases in Breast Cancer Using Convolutional Neural Networks.

Cancers (Basel). 2021-2-7

[9]
Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study.

Lancet Digit Health. 2020-9

[10]
Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women.

Cancer. 2020-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索