文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Light-Dermo:一种用于多类皮肤病变诊断的轻量级预训练卷积神经网络。

Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions.

作者信息

Baig Abdul Rauf, Abbas Qaisar, Almakki Riyad, Ibrahim Mostafa E A, AlSuwaidan Lulwah, Ahmed Alaa E S

机构信息

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Jan 19;13(3):385. doi: 10.3390/diagnostics13030385.


DOI:10.3390/diagnostics13030385
PMID:36766490
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9914027/
Abstract

Skin cancer develops due to the unusual growth of skin cells. Early detection is critical for the recognition of multiclass pigmented skin lesions (PSLs). At an early stage, the manual work by ophthalmologists takes time to recognize the PSLs. Therefore, several "computer-aided diagnosis (CAD)" systems are developed by using image processing, machine learning (ML), and deep learning (DL) techniques. Deep-CNN models outperformed traditional ML approaches in extracting complex features from PSLs. In this study, a special transfer learning (TL)-based CNN model is suggested for the diagnosis of seven classes of PSLs. A novel approach (Light-Dermo) is developed that is based on a lightweight CNN model and applies the channelwise attention (CA) mechanism with a focus on computational efficiency. The ShuffleNet architecture is chosen as the backbone, and squeeze-and-excitation (SE) blocks are incorporated as the technique to enhance the original ShuffleNet architecture. Initially, an accessible dataset with 14,000 images of PSLs from seven classes is used to validate the Light-Dermo model. To increase the size of the dataset and control its imbalance, we have applied data augmentation techniques to seven classes of PSLs. By applying this technique, we collected 28,000 images from the HAM10000, ISIS-2019, and ISIC-2020 datasets. The outcomes of the experiments show that the suggested approach outperforms compared techniques in many cases. The most accurately trained model has an accuracy of 99.14%, a specificity of 98.20%, a sensitivity of 97.45%, and an F1-score of 98.1%, with fewer parameters compared to state-of-the-art DL models. The experimental results show that Light-Dermo assists the dermatologist in the better diagnosis of PSLs. The Light-Dermo code is available to the public on GitHub so that researchers can use it and improve it.

摘要

皮肤癌是由于皮肤细胞异常生长而产生的。早期检测对于识别多类色素沉着性皮肤病变(PSL)至关重要。在早期阶段,眼科医生的人工识别PSL需要花费时间。因此,人们利用图像处理、机器学习(ML)和深度学习(DL)技术开发了几种“计算机辅助诊断(CAD)”系统。深度卷积神经网络(Deep-CNN)模型在从PSL中提取复杂特征方面优于传统的ML方法。在本研究中,提出了一种基于特殊迁移学习(TL)的CNN模型用于诊断七类PSL。开发了一种新颖的方法(Light-Dermo),该方法基于轻量级CNN模型,并应用通道注意力(CA)机制,重点关注计算效率。选择ShuffleNet架构作为主干,并引入挤压激励(SE)块作为增强原始ShuffleNet架构的技术。最初,使用一个可访问的数据集,该数据集包含来自七类的14000张PSL图像,用于验证Light-Dermo模型。为了增加数据集的大小并控制其不平衡性,我们对七类PSL应用了数据增强技术。通过应用该技术,我们从HAM10000、ISIS-2019和ISIC-2020数据集中收集了28000张图像。实验结果表明,所提出的方法在许多情况下优于比较技术。训练最准确的模型准确率为99.14%,特异性为98.20%,灵敏度为97.45%,F1分数为98.1%,与最先进的DL模型相比参数更少。实验结果表明,Light-Dermo有助于皮肤科医生更好地诊断PSL。Light-Dermo代码在GitHub上向公众开放,以便研究人员可以使用和改进它。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/361f0ae04893/diagnostics-13-00385-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/d22203f27b0e/diagnostics-13-00385-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/b347e8c85aae/diagnostics-13-00385-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/f4605965828b/diagnostics-13-00385-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/3481067a0c79/diagnostics-13-00385-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/cb0edcc14d41/diagnostics-13-00385-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/ec59a9d2a25d/diagnostics-13-00385-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/5fb87c1b5cf5/diagnostics-13-00385-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/0a337ed1c2cf/diagnostics-13-00385-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/6fb864e00602/diagnostics-13-00385-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/dc4e3cfdac5d/diagnostics-13-00385-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/7e318be08b27/diagnostics-13-00385-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/291ae3a83b1c/diagnostics-13-00385-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/5880caa7413c/diagnostics-13-00385-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/3d0bb63bab96/diagnostics-13-00385-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/35660dc467a8/diagnostics-13-00385-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/361f0ae04893/diagnostics-13-00385-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/d22203f27b0e/diagnostics-13-00385-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/b347e8c85aae/diagnostics-13-00385-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/f4605965828b/diagnostics-13-00385-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/3481067a0c79/diagnostics-13-00385-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/cb0edcc14d41/diagnostics-13-00385-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/ec59a9d2a25d/diagnostics-13-00385-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/5fb87c1b5cf5/diagnostics-13-00385-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/0a337ed1c2cf/diagnostics-13-00385-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/6fb864e00602/diagnostics-13-00385-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/dc4e3cfdac5d/diagnostics-13-00385-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/7e318be08b27/diagnostics-13-00385-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/291ae3a83b1c/diagnostics-13-00385-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/5880caa7413c/diagnostics-13-00385-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/3d0bb63bab96/diagnostics-13-00385-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/35660dc467a8/diagnostics-13-00385-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e5c/9914027/361f0ae04893/diagnostics-13-00385-g016.jpg

相似文献

[1]
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions.

Diagnostics (Basel). 2023-1-19

[2]
Assist-Dermo: A Lightweight Separable Vision Transformer Model for Multiclass Skin Lesion Classification.

Diagnostics (Basel). 2023-7-29

[3]
Boosting the performance of pretrained CNN architecture on dermoscopic pigmented skin lesion classification.

Skin Res Technol. 2023-11

[4]
Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture.

Diagnostics (Basel). 2023-4-17

[5]
Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework.

Bioengineering (Basel). 2023-12-15

[6]
An extremely lightweight CNN model for the diagnosis of chest radiographs in resource-constrained environments.

Med Phys. 2023-12

[7]
Automatic identification of benign pigmented skin lesions from clinical images using deep convolutional neural network.

BMC Biotechnol. 2022-10-10

[8]
Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions.

Diagnostics (Basel). 2023-9-12

[9]
CAD-ALZ: A Blockwise Fine-Tuning Strategy on Convolutional Model and Random Forest Classifier for Recognition of Multistage Alzheimer's Disease.

Diagnostics (Basel). 2023-1-3

[10]
Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.

Comput Math Methods Med. 2021

引用本文的文献

[1]
An endoscopic ultrasound-based interpretable deep learning model and nomogram for distinguishing pancreatic neuroendocrine tumors from pancreatic cancer.

Sci Rep. 2025-1-27

[2]
Ensemble machine learning framework for predicting maternal health risk during pregnancy.

Sci Rep. 2024-9-14

[3]
Enhancing Skin Cancer Classification using Efficient Net B0-B7 through Convolutional Neural Networks and Transfer Learning with Patient-Specific Data.

Asian Pac J Cancer Prev. 2024-5-1

[4]
An ensemble-based deep learning model for detection of mutation causing cutaneous melanoma.

Sci Rep. 2023-12-14

[5]
Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions.

Diagnostics (Basel). 2023-9-12

[6]
Assist-Dermo: A Lightweight Separable Vision Transformer Model for Multiclass Skin Lesion Classification.

Diagnostics (Basel). 2023-7-29

[7]
AI Techniques of Dermoscopy Image Analysis for the Early Detection of Skin Lesions Based on Combined CNN Features.

Diagnostics (Basel). 2023-4-1

本文引用的文献

[1]
Concatenated Xception-ResNet50 - A novel hybrid approach for accurate skin cancer prediction.

Comput Biol Med. 2022-11

[2]
Skin lesion classification of dermoscopic images using machine learning and convolutional neural network.

Sci Rep. 2022-10-28

[3]
Multi-Class Skin Lesion Classification Using a Lightweight Dynamic Kernel Deep-Learning-Based Convolutional Neural Network.

Diagnostics (Basel). 2022-8-24

[4]
An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer.

Diagnostics (Basel). 2022-7-5

[5]
On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning.

Sensors (Basel). 2022-6-30

[6]
Skin Lesion Classification Using Collective Intelligence of Multiple Neural Networks.

Sensors (Basel). 2022-6-10

[7]
Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review.

Lancet Digit Health. 2022-6

[8]
Effect of neural network structure in accelerating performance and accuracy of a convolutional neural network with GPU/TPU for image analytics.

PeerJ Comput Sci. 2022-3-3

[9]
A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models.

Diagnostics (Basel). 2022-3-17

[10]
TATL: Task agnostic transfer learning for skin attributes detection.

Med Image Anal. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索