Department of Electrical and Electronics Engineering, Saveetha Engineering College, Tamil Nadu, India.
Department of Electrical and Electronics Engineering, VISAT Engineering College, Kerala, India.
Asian Pac J Cancer Prev. 2024 May 1;25(5):1795-1802. doi: 10.31557/APJCP.2024.25.5.1795.
Skin cancer diagnosis challenges dermatologists due to its complex visual variations across diagnostic categories. Convolutional neural networks (CNNs), specifically the Efficient Net B0-B7 series, have shown superiority in multiclass skin cancer classification. This study addresses the limitations of visual examination by presenting a tailored preprocessing pipeline designed for Efficient Net models. Leveraging transfer learning with pre-trained ImageNet weights, the research aims to enhance diagnostic accuracy in an imbalanced multiclass classification context.
The study develops a specialized image preprocessing pipeline involving image scaling, dataset augmentation, and artifact removal tailored to the nuances of Efficient Net models. Using the Efficient Net B0-B7 dataset, transfer learning fine-tunes CNNs with pre-trained ImageNet weights. Rigorous evaluation employs key metrics like Precision, Recall, Accuracy, F1 Score, and Confusion Matrices to assess the impact of transfer learning and fine-tuning on each Efficient Net variant's performance in classifying diverse skin cancer categories.
The research showcases the effectiveness of the tailored preprocessing pipeline for Efficient Net models. Transfer learning and fine-tuning significantly enhance the models' ability to discern diverse skin cancer categories. The evaluation of eight Efficient Net models (B0-B7) for skin cancer classification reveals distinct performance patterns across various cancer classes. While the majority class, Benign Kertosis, achieves high accuracy (>87%), challenges arise in accurately classifying Eczema classes. Melanoma, despite its minority representation (2.42% of images), attains an average accuracy of 80.51% across all models. However, suboptimal performance is observed in predicting warts molluscum (90.7%) and psoriasis (84.2%) instances, highlighting the need for targeted improvements in accurately identifying specific skin cancer types.
The study on skin cancer classification utilizes EfficientNets B0-B7 with transfer learning from ImageNet weights. The pinnacle performance is observed with EfficientNet-B7, achieving a groundbreaking top-1 accuracy of 84.4% and top-5 accuracy of 97.1%. Remarkably efficient, it is 8.4 times smaller than the leading CNN. Detailed per-class classification exactitudes through Confusion Matrices affirm its proficiency, signaling the potential of EfficientNets for precise dermatological image analysis.
由于诊断类别之间存在复杂的视觉变化,皮肤癌的诊断对皮肤科医生来说是一个挑战。卷积神经网络(CNN),特别是 EfficientNet B0-B7 系列,在多类别皮肤癌分类方面表现出优越性。本研究通过提出专门针对 EfficientNet 模型的预处理流水线来解决视觉检查的局限性。通过使用预训练的 ImageNet 权重进行迁移学习,该研究旨在提高不平衡多类别分类情况下的诊断准确性。
该研究开发了一种专门的图像预处理流水线,包括图像缩放、数据集扩充和去除伪影,这些都是针对 EfficientNet 模型的细微差别进行的。使用 EfficientNet B0-B7 数据集,通过使用预训练的 ImageNet 权重对 CNN 进行迁移学习微调。通过使用 Precision、Recall、Accuracy、F1 Score 和混淆矩阵等关键指标进行严格评估,评估迁移学习和微调对每种 EfficientNet 变体在分类各种皮肤癌类别的性能的影响。
该研究展示了专门针对 EfficientNet 模型的预处理流水线的有效性。迁移学习和微调显著提高了模型区分各种皮肤癌类别的能力。对 8 种 EfficientNet 模型(B0-B7)进行皮肤癌分类的评估显示,在各种癌症类别中表现出不同的性能模式。虽然良性角质瘤的主要类别(87%以上)达到了很高的准确性,但在准确分类湿疹类别方面仍存在挑战。黑色素瘤虽然只占图像的 2.42%,但在所有模型中平均准确率达到 80.51%。然而,在预测疣(84.2%)和银屑病(84.2%)方面的表现不佳,这表明需要有针对性地改进对特定皮肤癌类型的准确识别。
该皮肤癌分类研究使用 EfficientNet B0-B7 并从 ImageNet 权重进行迁移学习。EfficientNet-B7 达到了令人瞩目的最高准确率,达到了 84.4%的 top-1 准确率和 97.1%的 top-5 准确率。它的效率非常高,只有 8.4 倍于领先的 CNN。通过混淆矩阵详细的每类分类精度证实了其性能,这表明 EfficientNet 有可能用于精确的皮肤科图像分析。