Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK.
Department of Dermatology, Churchill Hospital, Oxford, UK.
Lancet Digit Health. 2022 Jun;4(6):e466-e476. doi: 10.1016/S2589-7500(22)00023-1.
Skin cancers occur commonly worldwide. The prognosis and disease burden are highly dependent on the cancer type and disease stage at diagnosis. We systematically reviewed studies on artificial intelligence and machine learning (AI/ML) algorithms that aim to facilitate the early diagnosis of skin cancers, focusing on their application in primary and community care settings. We searched MEDLINE, Embase, Scopus, and Web of Science (from Jan 1, 2000, to Aug 9, 2021) for all studies providing evidence on applying AI/ML algorithms to the early diagnosis of skin cancer, including all study designs and languages. The primary outcome was diagnostic accuracy of the algorithms for skin cancers. The secondary outcomes included an overview of AI/ML methods, evaluation approaches, cost-effectiveness, and acceptability to patients and clinicians. We identified 14 224 studies. Only two studies used data from clinical settings with a low prevalence of skin cancers. We reported data from all 272 studies that could be relevant in primary care. The primary outcomes showed reasonable mean diagnostic accuracy for melanoma (89·5% [range 59·7-100%]), squamous cell carcinoma (85·3% [71·0-97·8%]), and basal cell carcinoma (87·6% [70·0-99·7%]). The secondary outcomes showed a heterogeneity of AI/ML methods and study designs, with high amounts of incomplete reporting (eg, patient demographics and methods of data collection). Few studies used data on populations with a low prevalence of skin cancers to train and test their algorithms; therefore, the widespread adoption into community and primary care practice cannot currently be recommended until efficacy in these populations is shown. We did not identify any health economic, patient, or clinician acceptability data for any of the included studies. We propose a methodological checklist for use in the development of new AI/ML algorithms to detect skin cancer, to facilitate their design, evaluation, and implementation.
皮肤癌在全球范围内较为常见。其预后和疾病负担高度取决于癌症类型和诊断时的疾病阶段。我们系统性地回顾了旨在促进皮肤癌早期诊断的人工智能和机器学习(AI/ML)算法的研究,重点关注其在初级和社区护理环境中的应用。我们检索了 MEDLINE、Embase、Scopus 和 Web of Science(从 2000 年 1 月 1 日至 2021 年 8 月 9 日)中的所有研究,这些研究提供了应用 AI/ML 算法早期诊断皮肤癌的证据,包括所有研究设计和语言。主要结局是算法对皮肤癌的诊断准确性。次要结局包括 AI/ML 方法概述、评估方法、成本效益以及患者和临床医生的可接受性。我们确定了 14224 项研究。仅有两项研究使用了来自皮肤癌患病率较低的临床环境的数据。我们报告了所有 272 项可能与初级保健相关的研究的数据。主要结局显示黑素瘤(89.5%[59.7-100%])、鳞状细胞癌(85.3%[71.0-97.8%])和基底细胞癌(87.6%[70.0-99.7%])的平均诊断准确性较好。次要结局显示 AI/ML 方法和研究设计存在很大的异质性,并且存在大量不完整的报告(例如,患者人口统计学和数据收集方法)。很少有研究使用皮肤癌患病率较低的人群的数据来训练和测试他们的算法;因此,在这些人群中证明其疗效之前,不能推荐将其广泛应用于社区和初级保健实践中。我们没有发现任何关于所纳入研究的健康经济学、患者或临床医生可接受性的数据。我们提出了一个用于开发新的 AI/ML 算法以检测皮肤癌的方法学检查表,以促进其设计、评估和实施。
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2022-4-1
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2018-1-16
Health Technol Assess. 2006-6
Cochrane Database Syst Rev. 2018-1-10
Cochrane Database Syst Rev. 2022-5-23
Curr Opin Biomed Eng. 2025-6
Front Public Health. 2025-7-18
Ir J Med Sci. 2025-7-21
Healthcare (Basel). 2025-7-7