文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

皮肤病变分割:用于检测鉴别模式以诊断色素性皮肤病变的ResNet-UNet架构和混合损失函数

Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions.

作者信息

Arshad Sannia, Amjad Tehmina, Hussain Ayyaz, Qureshi Imran, Abbas Qaisar

机构信息

Department of Computer Science, Faculty of Basic and Applied Science, International Islamic University, Islamabad 44000, Pakistan.

Department of Computer Science, Quaid e Azam University, Islamabad 44000, Pakistan.

出版信息

Diagnostics (Basel). 2023 Sep 12;13(18):2924. doi: 10.3390/diagnostics13182924.


DOI:10.3390/diagnostics13182924
PMID:37761291
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10527859/
Abstract

Convolutional neural network (CNN) models have been extensively applied to skin lesions segmentation due to their information discrimination capabilities. However, CNNs' struggle to capture the connection between long-range contexts when extracting deep semantic features from lesion images, resulting in a semantic gap that causes segmentation distortion in skin lesions. Therefore, detecting the presence of differential structures such as pigment networks, globules, streaks, negative networks, and milia-like cysts becomes difficult. To resolve these issues, we have proposed an approach based on semantic-based segmentation (Dermo-Seg) to detect differential structures of lesions using a UNet model with a transfer-learning-based ResNet-50 architecture and a hybrid loss function. The Dermo-Seg model uses ResNet-50 backbone architecture as an encoder in the UNet model. We have applied a combination of focal Tversky loss and IOU loss functions to handle the dataset's highly imbalanced class ratio. The obtained results prove that the intended model performs well compared to the existing models. The dataset was acquired from various sources, such as ISIC18, ISBI17, and HAM10000, to evaluate the Dermo-Seg model. We have dealt with the data imbalance present within each class at the pixel level using our hybrid loss function. The proposed model achieves a mean IOU score of 0.53 for streaks, 0.67 for pigment networks, 0.66 for globules, 0.58 for negative networks, and 0.53 for milia-like-cysts. Overall, the Dermo-Seg model is efficient in detecting different skin lesion structures and achieved 96.4% on the IOU index. Our Dermo-Seg system improves the IOU index compared to the most recent network.

摘要

卷积神经网络(CNN)模型因其信息辨别能力而被广泛应用于皮肤病变分割。然而,CNN在从病变图像中提取深度语义特征时难以捕捉远距离上下文之间的联系,导致语义鸿沟,进而造成皮肤病变分割失真。因此,检测色素网络、小球、条纹、负网络和粟丘疹样囊肿等差异结构的存在变得困难。为了解决这些问题,我们提出了一种基于语义分割的方法(Dermo-Seg),使用具有基于迁移学习的ResNet-50架构的UNet模型和混合损失函数来检测病变的差异结构。Dermo-Seg模型在UNet模型中使用ResNet-50骨干架构作为编码器。我们应用了焦点Tversky损失和交并比(IOU)损失函数的组合来处理数据集中高度不平衡的类别比例。所得结果证明,与现有模型相比,目标模型表现良好。该数据集从ISIC18、ISBI17和HAM10000等各种来源获取,以评估Dermo-Seg模型。我们使用混合损失函数在像素级别处理每个类别中存在的数据不平衡问题。所提出的模型在条纹方面的平均IOU得分为0.53,色素网络为0.67,小球为0.66,负网络为0.58,粟丘疹样囊肿为0.53。总体而言,Dermo-Seg模型在检测不同皮肤病变结构方面效率很高,在IOU指标上达到了96.4%。与最新网络相比,我们的Dermo-Seg系统提高了IOU指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/126e07f3df0b/diagnostics-13-02924-g016a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/912169a2833a/diagnostics-13-02924-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/1528c791d315/diagnostics-13-02924-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/0f1906a7edd8/diagnostics-13-02924-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/087bb06486ca/diagnostics-13-02924-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/91ebb4a8b36b/diagnostics-13-02924-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/a84635e2d0b3/diagnostics-13-02924-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/4afd5c1ffedd/diagnostics-13-02924-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/efe6e3c5604f/diagnostics-13-02924-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/131a4380b759/diagnostics-13-02924-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/f7cce7cf6d3b/diagnostics-13-02924-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/93ef4009b98c/diagnostics-13-02924-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/3fb5f3b61eea/diagnostics-13-02924-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/35df752f24b8/diagnostics-13-02924-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/759b20339a7f/diagnostics-13-02924-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/fad6c320502e/diagnostics-13-02924-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/126e07f3df0b/diagnostics-13-02924-g016a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/912169a2833a/diagnostics-13-02924-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/1528c791d315/diagnostics-13-02924-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/0f1906a7edd8/diagnostics-13-02924-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/087bb06486ca/diagnostics-13-02924-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/91ebb4a8b36b/diagnostics-13-02924-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/a84635e2d0b3/diagnostics-13-02924-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/4afd5c1ffedd/diagnostics-13-02924-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/efe6e3c5604f/diagnostics-13-02924-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/131a4380b759/diagnostics-13-02924-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/f7cce7cf6d3b/diagnostics-13-02924-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/93ef4009b98c/diagnostics-13-02924-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/3fb5f3b61eea/diagnostics-13-02924-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/35df752f24b8/diagnostics-13-02924-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/759b20339a7f/diagnostics-13-02924-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/fad6c320502e/diagnostics-13-02924-g015a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9e/10527859/126e07f3df0b/diagnostics-13-02924-g016a.jpg

相似文献

[1]
Dermo-Seg: ResNet-UNet Architecture and Hybrid Loss Function for Detection of Differential Patterns to Diagnose Pigmented Skin Lesions.

Diagnostics (Basel). 2023-9-12

[2]
HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation.

Sensors (Basel). 2023-3-13

[3]
Convolutional neural network for automated mass segmentation in mammography.

BMC Bioinformatics. 2020-12-9

[4]
RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning.

Front Oncol. 2023-3-23

[5]
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures.

PeerJ Comput Sci. 2021-6-29

[6]
Dense-UNet: a novel multiphoton cellular image segmentation model based on a convolutional neural network.

Quant Imaging Med Surg. 2020-6

[7]
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy.

Comput Biol Med. 2021-10

[8]
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions.

Diagnostics (Basel). 2023-1-19

[9]
ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation.

Comput Biol Med. 2024-3

[10]
Multi-scale context UNet-like network with redesigned skip connections for medical image segmentation.

Comput Methods Programs Biomed. 2024-1

引用本文的文献

[1]
Exploring the Interplay of Dataset Size and Imbalance on CNN Performance in Healthcare: Using X-rays to Identify COVID-19 Patients.

Diagnostics (Basel). 2024-8-8

[2]
DTONet a Lightweight Model for Melanoma Segmentation.

Bioengineering (Basel). 2024-4-18

[3]
Concurrent Learning Approach for Estimation of Pelvic Tilt from Anterior-Posterior Radiograph.

Bioengineering (Basel). 2024-2-17

本文引用的文献

[1]
Assist-Dermo: A Lightweight Separable Vision Transformer Model for Multiclass Skin Lesion Classification.

Diagnostics (Basel). 2023-7-29

[2]
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions.

Diagnostics (Basel). 2023-1-19

[3]
Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images.

BMC Med Imaging. 2022-5-29

[4]
TATL: Task agnostic transfer learning for skin attributes detection.

Med Image Anal. 2022-5

[5]
Automated Skin Lesion Segmentation Via an Adaptive Dual Attention Module.

IEEE Trans Med Imaging. 2021-1

[6]
Automatic skin lesion segmentation based on FC-DPN.

Comput Biol Med. 2020-8

[7]
Skin Lesion Segmentation with Improved Convolutional Neural Network.

J Digit Imaging. 2020-8

[8]
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm.

Diagnostics (Basel). 2019-7-10

[9]
Dermoscopy: A Review of the Structures That Facilitate Melanoma Detection.

J Am Osteopath Assoc. 2019-6-1

[10]
Dense Deconvolutional Network for Skin Lesion Segmentation.

IEEE J Biomed Health Inform. 2018-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索