Suppr超能文献

机器学习——通过磁场增强的人体心血管系统将纳米颗粒递送至癌组织的新型药物输送模式

Machine learning- a new paradigm in nanoparticle-mediated drug delivery to cancerous tissues through the human cardiovascular system enhanced by magnetic field.

机构信息

Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.

Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, Hubei, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22048. doi: 10.1038/s41598-024-72629-z.

Abstract

Nanoparticle-mediated drug delivery offers a promising approach to targeted cancer therapy, leveraging the ability of nanoparticles to deliver therapeutic agents directly to cancerous tissues with minimal impact on surrounding healthy cells. The presence of these nanoparticles is governed by a concentration equation, which accounts for the diffusion, convection, and reaction of the nanoparticles with the blood components. It is well-known that whenever a disease or infection occurs in a human, in 80% of cases a rise in the concentration of hydrogen peroxide in the blood occurs. This is the reason why blood is assumed to contain hydrogen peroxide (in the present study), which is a biomarker of oxidative stress and inflammation. This study explores the integration of machine learning (ML) techniques into the optimization of drug delivery processes within the human cardiovascular system, focusing on the enhancement of these processes through the application of magnetic fields. By employing ML algorithms, we analyze and predict the behavior of nanoparticles as they navigate the complex fluid dynamics of the cardiovascular system, particularly under the influence of an external magnetic field. The predictive power of ML models enables the precise control of nanoparticle trajectories, optimizing their accumulation in cancerous tissues and improving the efficacy of the drug delivery system. The findings of this study demonstrate that ML-enhanced magnetic targeting can significantly enhance the precision and effectiveness of nanoparticle-mediated drug delivery, offering a new paradigm in cancer treatment strategies. This approach has the potential to revolutionize the field by providing personalized and highly efficient therapeutic solutions for cancer patients.

摘要

纳米颗粒介导的药物输送为靶向癌症治疗提供了一种有前途的方法,利用纳米颗粒将治疗剂直接输送到癌组织的能力,同时对周围健康细胞的影响最小。这些纳米颗粒的存在受浓度方程控制,该方程考虑了纳米颗粒与血液成分的扩散、对流和反应。众所周知,每当人体发生疾病或感染时,血液中过氧化氢的浓度都会升高 80%。这就是为什么血液中被认为含有过氧化氢(在本研究中)的原因,过氧化氢是氧化应激和炎症的生物标志物。本研究探讨了将机器学习 (ML) 技术集成到人体心血管系统中的药物输送过程优化中,重点是通过应用磁场来增强这些过程。通过使用 ML 算法,我们分析和预测了纳米颗粒在心血管系统复杂流动力学中的行为,特别是在外磁场的影响下。ML 模型的预测能力能够精确控制纳米颗粒的轨迹,优化它们在癌组织中的积累,并提高药物输送系统的疗效。这项研究的结果表明,ML 增强的磁靶向可以显著提高纳米颗粒介导的药物输送的精度和效果,为癌症治疗策略提供了一种新的范例。这种方法有可能通过为癌症患者提供个性化和高效的治疗解决方案来彻底改变该领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd2/11436989/9caeb8387407/41598_2024_72629_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验