Champigneulle Benoit, Reinhard Lukas, Mademilov Maamed, Marillier Mathieu, Ulrich Tanja, Carta Arcangelo F, Scheiwiller Philipp, Shabykeeva Saltanat B, Sheraliev Ulan U, Abdraeva Ainura K, Magdieva Kamila M, Mirzalieva Gulzada, Taalaibekova Aijan T, Ozonova Aigul K, Erkinbaeva Aidai O, Shakiev Nurdin U, Azizbekov Syimyk A, Ainslie Philip N, Sooronbaev Talant M, Ulrich Silvia, Bloch Konrad E, Verges Samuel, Furian Michael
HP2 Laboratory, INSERM U1300, Grenoble Alpes University, CHU Grenoble Alpes, 38400 Grenoble, France.
Department of Anesthesia and Critical Care, Grenoble Alpes University Hospital, 38043 Grenoble, France.
J Clin Med. 2023 Jan 19;12(3):795. doi: 10.3390/jcm12030795.
Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO (cPaO) derived from pulse oximetry (SpO), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO (AGM100) and mPaO (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO (AGM100) and mPaO (EPOC) and between the O-deficit (calculated as the difference between end-tidal pressure of O and cPaO by the AGM100) and Riley A-aDO were assessed. Mean bias (±SD) between cPaO and mPaO was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): -7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index ( = 0.046), an increase in SpO ( < 0.001), and an increase in PaCO-PETCO difference ( < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO and mPaO). The positive predictive value of cPaO to detect severe hypoxemia (i.e., PaO ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O-deficit and A-aDO was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: -4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients.
肺气体交换效能的研究通常需要进行动脉血气分析(aBGA)来测定动脉血氧分压(mPaO)并计算莱利肺泡-动脉血氧分压差(A-aDO);这是一种要求较高且具有侵入性的操作。一种非侵入性方法(AGM100)已被开发出来,它可以根据脉搏血氧饱和度(SpO)计算得出动脉血氧分压(cPaO),但尚未在一大群慢性阻塞性肺疾病(COPD)患者中得到验证。我们的目的是在低氧血症的中重度COPD患者中对AG100进行验证研究。对131例中重度COPD患者(平均±标准差FEV:为预测值的60±10%)以及低海拔居民进行了cPaO(AGM100)和mPaO(EPOC,便携式aBGA设备)的同步测量,这些患者在吉尔吉斯斯坦托奥-阿舒海拔3100米处短暂停留期间出现低氧血症(即SpO<94%)。评估了cPaO(AGM100)与mPaO(EPOC)之间以及氧亏缺(通过AGM100计算为呼气末氧分压与cPaO之间的差值)与莱利A-aDO之间的一致性。cPaO与mPaO之间的平均偏差(±标准差)为±4.6 mmHg(95%置信区间(CI):1.2至2.8 mmHg),95%一致性界限(LoA)为-7.1至11.1 mmHg。在多变量分析中,较高的体重指数(=0.046)、SpO的升高(<0.001)以及动脉血二氧化碳分压-呼气末二氧化碳分压差值的增加(<0.001)与不精确性(即cPaO与mPaO之间的差异)相关。cPaO检测严重低氧血症(即PaO≤55 mmHg)的阳性预测值为0.94(95%CI:0.87至0.98),阳性似然比为3.77(95%CI:1.71至8.33)。氧亏缺与A-aDO之间的平均偏差为6.2±5.5 mmHg(95%CI:5.3至7.2 mmHg;95%LoA:-4.5至17.0 mmHg)。AGM100能够准确估计COPD低氧血症患者的PaO,但个体值的精确性一般。该设备在无创评估COPD患者肺气体交换效能方面具有前景。