Suppr超能文献

非线性模型联合传统实验室指标在卵巢癌诊断及鉴别诊断中的应用

Application of Nonlinear Models Combined with Conventional Laboratory Indicators for the Diagnosis and Differential Diagnosis of Ovarian Cancer.

作者信息

Zhang Tongshuo, Pang Aibo, Lyu Jungang, Ren Hefei, Song Jiangnan, Zhu Feng, Liu Jinlong, Cui Yuntao, Ling Cunbao, Tian Yaping

机构信息

Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People's Armed Police Force (PAP), Yangzhou 225003, China.

Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China.

出版信息

J Clin Med. 2023 Jan 20;12(3):844. doi: 10.3390/jcm12030844.

Abstract

Existing biomarkers for ovarian cancer lack sensitivity and specificity. We compared the diagnostic efficacy of nonlinear machine learning and linear statistical models for diagnosing ovarian cancer using a combination of conventional laboratory indicators. We divided 901 retrospective samples into an ovarian cancer group and a control group, comprising non-ovarian malignant gynecological tumor (NOMGT), benign gynecological disease (BGD), and healthy control subgroups. Cases were randomly assigned to training and internal validation sets. Two linear (logistic regression (LR) and Fisher's linear discriminant (FLD)) and three nonlinear models (support vector machine (SVM), random forest (RF), and artificial neural network (ANN)) were constructed using 22 conventional laboratory indicators and three demographic characteristics. Model performance was compared. In an independent prospectively recruited validation set, the order of diagnostic efficiency was RF, SVM, ANN, FLD, LR, and carbohydrate antigen 125 (CA125)-only (AUC, accuracy: 0.989, 95.6%; 0.985, 94.4%; 0.974, 93.4%; 0.915, 82.1%; 0.859, 80.1%; and 0.732, 73.0%, respectively). RF maintained satisfactory classification performance for identifying different ovarian cancer stages and for discriminating it from NOMGT-, BGD-, or CA125-positive control. Nonlinear models outperformed linear models, indicating that nonlinear machine learning models can efficiently use conventional laboratory indicators for ovarian cancer diagnosis.

摘要

现有的卵巢癌生物标志物缺乏敏感性和特异性。我们使用传统实验室指标组合,比较了非线性机器学习和线性统计模型在诊断卵巢癌方面的诊断效能。我们将901份回顾性样本分为卵巢癌组和对照组,对照组包括非卵巢恶性妇科肿瘤(NOMGT)、良性妇科疾病(BGD)和健康对照亚组。病例被随机分配到训练集和内部验证集。使用22项传统实验室指标和三项人口统计学特征构建了两个线性模型(逻辑回归(LR)和Fisher线性判别(FLD))以及三个非线性模型(支持向量机(SVM)、随机森林(RF)和人工神经网络(ANN))。比较了模型性能。在一个独立的前瞻性招募的验证集中,诊断效率顺序为RF、SVM、ANN、FLD、LR和仅糖类抗原125(CA125)(AUC,准确率分别为:0.989,95.6%;0.985,94.4%;0.974,93.4%;0.915,82.1%;0.859,80.1%;和0.732,73.0%)。RF在识别不同卵巢癌阶段以及将其与NOMGT、BGD或CA125阳性对照区分开来方面保持了令人满意的分类性能。非线性模型优于线性模型,表明非线性机器学习模型可以有效地利用传统实验室指标进行卵巢癌诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验