Suppr超能文献

机器学习在常规实验室医学中的应用:现状与未来方向。

Applications of machine learning in routine laboratory medicine: Current state and future directions.

机构信息

Department of Clinical Informatics, Lucile Packard Children's Hospital, Palo Alto, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.

Department of Computer Science, Stanford University, Stanford, CA, USA.

出版信息

Clin Biochem. 2022 May;103:1-7. doi: 10.1016/j.clinbiochem.2022.02.011. Epub 2022 Feb 25.

Abstract

Machine learning is able to leverage large amounts of data to infer complex patterns that are otherwise beyond the capabilities of rule-based systems and human experts. Its application to laboratory medicine is particularly exciting, as laboratory testing provides much of the foundation for clinical decision making. In this article, we provide a brief introduction to machine learning for the medical professional in addition to a comprehensive literature review outlining the current state of machine learning as it has been applied to routine laboratory medicine. Although still in its early stages, machine learning has been used to automate laboratory tasks, optimize utilization, and provide personalized reference ranges and test interpretation. The published literature leads us to believe that machine learning will be an area of increasing importance for the laboratory practitioner. We envision the laboratory of the future will utilize these methods to make significant improvements in efficiency and diagnostic precision.

摘要

机器学习能够利用大量数据来推断复杂的模式,而这些模式是基于规则的系统和人类专家所无法企及的。它在医学实验室中的应用尤其令人兴奋,因为实验室检测为临床决策提供了重要的基础。在本文中,我们除了提供全面的文献综述,概述机器学习在常规实验室医学中的应用现状外,还为医学专业人员简要介绍了机器学习。尽管机器学习仍处于早期阶段,但它已被用于自动化实验室任务、优化利用率,并提供个性化的参考范围和检测解释。已发表的文献使我们相信,机器学习将成为实验室从业者越来越重要的领域。我们可以预见,未来的实验室将利用这些方法来显著提高效率和诊断精度。

相似文献

1
Applications of machine learning in routine laboratory medicine: Current state and future directions.
Clin Biochem. 2022 May;103:1-7. doi: 10.1016/j.clinbiochem.2022.02.011. Epub 2022 Feb 25.
3
eDoctor: machine learning and the future of medicine.
J Intern Med. 2018 Dec;284(6):603-619. doi: 10.1111/joim.12822. Epub 2018 Sep 3.
4
Applications of machine learning in the chemical pathology laboratory.
J Clin Pathol. 2021 Jul;74(7):435-442. doi: 10.1136/jclinpath-2021-207393. Epub 2021 Jun 11.
6
Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review.
Clin Chem. 2021 Nov 1;67(11):1466-1482. doi: 10.1093/clinchem/hvab165.
7
[Machine learning in anesthesiology].
Anaesthesist. 2020 Aug;69(8):535-543. doi: 10.1007/s00101-020-00764-z.
8
Predictive models for clinical decision making: Deep dives in practical machine learning.
J Intern Med. 2022 Aug;292(2):278-295. doi: 10.1111/joim.13483. Epub 2022 Apr 25.
9
Artificial intelligence in the clinical laboratory.
Clin Chim Acta. 2024 Jun 1;559:119724. doi: 10.1016/j.cca.2024.119724. Epub 2024 May 10.
10
Artificial Intelligence in the Clinical Laboratory: An Overview with Frequently Asked Questions.
Clin Lab Med. 2023 Mar;43(1):1-16. doi: 10.1016/j.cll.2022.09.002. Epub 2022 Dec 13.

引用本文的文献

3
Recent advances in machine learning for precision diagnosis and treatment of esophageal disorders.
World J Gastroenterol. 2025 Jun 21;31(23):105076. doi: 10.3748/wjg.v31.i23.105076.
4
Integration of bulk RNA-seq and scRNA-seq reveals transcriptomic signatures associated with deep vein thrombosis.
Front Genet. 2025 Apr 24;16:1551879. doi: 10.3389/fgene.2025.1551879. eCollection 2025.
5
Using Artificial Intelligence to Enhance Myelodysplastic Syndrome Diagnosis, Prognosis, and Treatment.
Biomedicines. 2025 Mar 31;13(4):835. doi: 10.3390/biomedicines13040835.
6
Rigorous validation of machine learning in laboratory medicine: guidance toward quality improvement.
Crit Rev Clin Lab Sci. 2025 Aug;62(5):327-346. doi: 10.1080/10408363.2025.2488842. Epub 2025 Apr 17.
9
A recurrence model for non-puerperal mastitis patients based on machine learning.
PLoS One. 2025 Jan 16;20(1):e0315406. doi: 10.1371/journal.pone.0315406. eCollection 2025.
10
Are we ready to integrate advanced artificial intelligence models in clinical laboratory?
Biochem Med (Zagreb). 2025 Feb 15;35(1):010501. doi: 10.11613/BM.2025.010501. Epub 2024 Dec 15.

本文引用的文献

1
Digital pathology and artificial intelligence in translational medicine and clinical practice.
Mod Pathol. 2022 Jan;35(1):23-32. doi: 10.1038/s41379-021-00919-2. Epub 2021 Oct 5.
2
Type 1 diabetes glycemic management: Insulin therapy, glucose monitoring, and automation.
Science. 2021 Jul 30;373(6554):522-527. doi: 10.1126/science.abg4502.
3
Identifying mislabelled samples: Machine learning models exceed human performance.
Ann Clin Biochem. 2021 Nov;58(6):650-652. doi: 10.1177/00045632211032991. Epub 2021 Jul 16.
4
Wearable sensors enable personalized predictions of clinical laboratory measurements.
Nat Med. 2021 Jun;27(6):1105-1112. doi: 10.1038/s41591-021-01339-0. Epub 2021 May 24.
5
Artificial intelligence in pathology and laboratory medicine.
J Clin Pathol. 2021 Jul;74(7):407-408. doi: 10.1136/jclinpath-2021-207682. Epub 2021 May 24.
6
Using machine learning to identify clotted specimens in coagulation testing.
Clin Chem Lab Med. 2021 Mar 3;59(7):1289-1297. doi: 10.1515/cclm-2021-0081. Print 2021 Jun 25.
8
Using machine learning to develop an autoverification system in a clinical biochemistry laboratory.
Clin Chem Lab Med. 2020 Nov 26;59(5):883-891. doi: 10.1515/cclm-2020-0716. Print 2021 Apr 27.
9
Artificial intelligence and computational pathology.
Lab Invest. 2021 Apr;101(4):412-422. doi: 10.1038/s41374-020-00514-0. Epub 2021 Jan 16.
10
The Value of Artificial Intelligence in Laboratory Medicine.
Am J Clin Pathol. 2021 May 18;155(6):823-831. doi: 10.1093/ajcp/aqaa170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验