King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Molecules. 2023 Jan 19;28(3):1023. doi: 10.3390/molecules28031023.
Because of their high filler loadings, commercial-grade clean flame-retardant materials have unstable mechanical properties. To address this issue, intumescent polymers can be used to develop clean flame retardants with very low levels of smoke and toxicity generation. An intumescent flame retardant (IFR) system composed of red phosphorus (RP), zinc borate (ZB), and a terpolymer of ethylene, butyl acrylate, and maleic anhydride (EBM) was used to prepare EVA (ethylene-vinyl acetate) and EVA/LLDPE (linear low-density polyethylene) composites; their mechanical and flammability properties were systematically investigated. The limiting oxygen index (LOI) of the EVA/LLDPE (as base material) composite containing RP and ZB mixed with nonhalogenated flame retardant, mainly magnesium hydroxide (MH) and coadditives, including processing aids and thermal stabilizers, was established. RP was found to have little effect on the tensile properties of EVA/LLDPE 118W/120 phr flame-retardant (MH + RP) composites. There was a minute difference in the effective trend of RP between tensile strength and elongation at break. Following the addition of ZB, the elongation at break of the composites gradually decreased with increasing RP content and then leveled off when the RP content was over 10 phr. Mechanical properties (elongation at break and tensile strength) can be best maintained at below 10 phr content of RP. The mechanical properties decreased with lower amounts of EBM content. In addition, flame retardancy increased when the EBM content decreased. The findings further revealed that MH and RP have poor compatibility, yielding poor mechanical properties. The LOI greatly increased with RP content, even though the total content of flame retardants (main + intumescent flame retardant) was the same in all formulations. Only over 5 phr RP content formulations passed V-0 of the UL-94 test. When under 5 phr, the RP content formulations did not pass V-0 of the UL-94 test.
由于商业级的清洁阻燃材料具有较高的填充量,因此其机械性能不稳定。为了解决这个问题,可以使用膨胀型聚合物来开发具有极低发烟量和毒性的清洁阻燃剂。本文使用由红磷 (RP)、硼酸锌 (ZB) 和乙烯、丙烯酸丁酯和马来酸酐的三元共聚物 (EBM) 组成的膨胀型阻燃剂 (IFR) 体系来制备 EVA(乙烯-醋酸乙烯酯) 和 EVA/LLDPE(线性低密度聚乙烯) 复合材料;系统地研究了它们的机械和阻燃性能。建立了含有 RP 和 ZB 的无卤阻燃剂(主要是氢氧化镁 (MH) 和添加剂,包括加工助剂和热稳定剂)与 EVA/LLDPE(作为基础材料)复合材料的极限氧指数 (LOI)。结果表明,RP 对 EVA/LLDPE 118W/120 phr 阻燃剂 (MH+RP) 复合材料的拉伸性能影响不大。在拉伸强度和断裂伸长率方面,RP 的有效趋势略有不同。随着 ZB 的加入,复合材料的断裂伸长率逐渐降低,当 RP 含量超过 10 phr 时趋于稳定。在 RP 含量低于 10 phr 的情况下,可以最好地保持机械性能(断裂伸长率和拉伸强度)。随着 EBM 含量的降低,机械性能下降。此外,阻燃性能随着 EBM 含量的降低而增加。研究结果进一步表明,MH 和 RP 相容性差,导致力学性能较差。尽管所有配方中阻燃剂(主阻燃剂+膨胀型阻燃剂)的总含量相同,但随着 RP 含量的增加,LOI 大大增加。只有超过 5 phr 的 RP 含量配方才能通过 UL-94 测试的 V-0 等级。当 RP 含量低于 5 phr 时,RP 含量配方不能通过 UL-94 测试的 V-0 等级。