Suppr超能文献

GPU 增强的 DFTB 分子动力学用于高效预测生物化学体系的自由能。

GPU-Enhanced DFTB Metadynamics for Efficiently Predicting Free Energies of Biochemical Systems.

机构信息

Materials Science & Engineering Program, University of California-Riverside, Riverside, CA 92521, USA.

Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA.

出版信息

Molecules. 2023 Jan 28;28(3):1277. doi: 10.3390/molecules28031277.

Abstract

Metadynamics calculations of large chemical systems with ab initio methods are computationally prohibitive due to the extensive sampling required to simulate the large degrees of freedom in these systems. To address this computational bottleneck, we utilized a GPU-enhanced density functional tight binding (DFTB) approach on a massively parallelized cloud computing platform to efficiently calculate the thermodynamics and metadynamics of biochemical systems. To first validate our approach, we calculated the free-energy surfaces of alanine dipeptide and showed that our GPU-enhanced DFTB calculations qualitatively agree with computationally-intensive hybrid DFT benchmarks, whereas classical force fields give significant errors. Most importantly, we show that our GPU-accelerated DFTB calculations are significantly faster than previous approaches by up to two orders of magnitude. To further extend our GPU-enhanced DFTB approach, we also carried out a 10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for routine DFT-based metadynamics calculations. We find that the free-energy surfaces of remdesivir obtained from DFTB and classical force fields differ significantly, where the latter overestimates the internal energy contribution of high free-energy states. Taken together, our benchmark tests, analyses, and extensions to large biochemical systems highlight the use of GPU-enhanced DFTB simulations for efficiently predicting the free-energy surfaces/thermodynamics of large biochemical systems.

摘要

由于需要广泛的采样来模拟这些系统中的大量自由度,因此使用从头算方法对大型化学系统进行元动力学计算在计算上是不可行的。为了解决这个计算瓶颈,我们利用基于 GPU 的密度泛函紧束缚(DFTB)方法在大规模并行的云计算平台上,高效地计算生物化学系统的热力学和元动力学。首先,我们验证了我们的方法,计算了丙氨酸二肽的自由能表面,结果表明我们的 GPU 增强 DFTB 计算与计算密集型混合 DFT 基准定性一致,而经典力场会产生显著的误差。最重要的是,我们表明,我们的 GPU 加速 DFTB 计算比以前的方法快得多,快了两个数量级。为了进一步扩展我们的 GPU 增强 DFTB 方法,我们还对瑞德西韦进行了 10ns 的元动力学模拟,这对于常规的基于 DFT 的元动力学计算来说是无法实现的。我们发现,从 DFTB 和经典力场得到的瑞德西韦的自由能表面有很大的差异,后者高估了高自由能状态的内能贡献。总之,我们对大型生物化学系统的基准测试、分析和扩展突出了使用 GPU 增强 DFTB 模拟来高效地预测大型生物化学系统的自由能表面/热力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/9920250/77a3b0653a42/molecules-28-01277-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验