Suppr超能文献

基于带高斯权的 BRISQUE 算法的光电跟踪设备图像定义评估。

The Image Definition Assessment of Optoelectronic Tracking Equipment Based on the BRISQUE Algorithm with Gaussian Weights.

机构信息

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2023 Feb 2;23(3):1621. doi: 10.3390/s23031621.

Abstract

Defocus is an important factor that causes image quality degradation of optoelectronic tracking equipment in the shooting range. In this paper, an improved blind/referenceless image spatial quality evaluator (BRISQUE) algorithm is formulated by using the image characteristic extraction technology to obtain a characteristic vector (CV). The CV consists of 36 characteristic values that can effectively reflect the defocusing condition of the corresponding image. The image is evaluated and scored subjectively by the human eyes. The subjective evaluation scores and CVs constitute a set of training data samples for the defocusing evaluation model. An image database that contains sufficiently many training samples is constructed. The training model is trained to obtain the support vector machine (SVM) model by using the regression function of the SVM. In the experiments, the BRISQUE algorithm is used to obtain the image feature vector. The method of establishing the image definition evaluation model via SVM is feasible and yields higher subjective and objective consistency.

摘要

散焦是靶场光电跟踪设备成像质量下降的一个重要因素。本文提出了一种改进的盲/无参考图像空间质量评价器(BRISQUE)算法,通过使用图像特征提取技术得到特征向量(CV)。CV 由 36 个特征值组成,能有效反映对应图像的散焦情况。通过人眼对图像进行主观评价和打分,主观评价得分和 CV 构成了一组用于散焦评价模型的训练数据样本。构建了一个包含足够多训练样本的图像数据库。利用 SVM 的回归函数对训练模型进行训练,得到支持向量机(SVM)模型。实验中,使用 BRISQUE 算法获取图像特征向量,利用 SVM 建立图像清晰度评价模型的方法是可行的,且具有更高的主观与客观一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验