Suppr超能文献

消除由设备矩阵故障导致的乳房X光片中的缺陷。

Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix.

作者信息

Tumakov Dmitrii, Kayumov Zufar, Zhumaniezov Alisher, Chikrin Dmitry, Galimyanov Diaz

机构信息

Institute of Computational Mathematics and Information Technologies, Kazan Federal University, 420008 Kazan, Russia.

Medical Unit, Department of Radiology, Kazan Federal University, 420008 Kazan, Russia.

出版信息

J Imaging. 2022 May 2;8(5):128. doi: 10.3390/jimaging8050128.

Abstract

Today, the processing and analysis of mammograms is quite an important field of medical image processing. Small defects in images can lead to false conclusions. This is especially true when the distortion occurs due to minor malfunctions in the equipment. In the present work, an algorithm for eliminating a defect is proposed, which includes a change in intensity on a mammogram and deteriorations in the contrast of individual areas. The algorithm consists of three stages. The first is the defect identification stage. The second involves improvement and equalization of the contrasts of different parts of the image outside the defect. The third involves restoration of the defect area via a combination of interpolation and an artificial neural network. The mammogram obtained as a result of applying the algorithm shows significantly better image quality and does not contain distortions caused by changes in brightness of the pixels. The resulting images are evaluated using Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and Naturalness Image Quality Evaluator (NIQE) metrics. In total, 98 radiomics features are extracted from the original and obtained images, and conclusions are drawn about the minimum changes in features between the original image and the image obtained by the proposed algorithm.

摘要

如今,乳房X光片的处理与分析是医学图像处理中相当重要的一个领域。图像中的小缺陷可能会导致错误的结论。当由于设备的轻微故障而出现失真时,情况尤其如此。在当前工作中,提出了一种消除缺陷的算法,该算法包括改变乳房X光片上的强度以及各个区域对比度的恶化。该算法由三个阶段组成。第一阶段是缺陷识别阶段。第二阶段涉及改善和均衡缺陷外部图像不同部分的对比度。第三阶段涉及通过插值和人工神经网络相结合来恢复缺陷区域。应用该算法后得到的乳房X光片显示出明显更好的图像质量,并且不包含由像素亮度变化引起的失真。使用盲/无参考图像空间质量评估器(BRISQUE)和自然度图像质量评估器(NIQE)指标对所得图像进行评估。总共从原始图像和所得图像中提取了98个放射组学特征,并得出了关于原始图像与所提出算法获得的图像之间特征最小变化的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c098/9143204/5c30236ec34b/jimaging-08-00128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验