State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
Adv Mater. 2024 Mar;36(10):e2211724. doi: 10.1002/adma.202211724. Epub 2023 Jul 12.
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
纳米酶是一类模拟酶功能的纳米材料,由于其晶体纳米结构、组成和表面构型的多样性,具有任意可调的特性,因此在多个领域引起了广泛关注。然而,由于其活性位点的不确定性以及纳米材料引发的催化相对于天然酶的内在缺陷较低,促使人们通过模拟生物活性中心来寻求替代品。单原子纳米酶(SAzymes)以其明确的结构最大限度地提高了原子利用率,为研究机制和结构与催化活性之间的关系提供了一个重要的桥梁。由于其灵活的原子工程结构,它们已经从体外生物分析工具上升为天然酶的新的新兴替代品,用于体内治疗。本文主要集中在三个部分。首先,详细概述了单原子催化剂的合成策略,包括自上而下和自下而上的方法。然后,根据单原子纳米催化剂的结构特点,讨论了中心金属原子、配位数、杂原子掺杂和金属-载体相互作用等影响因素,并重点介绍了其代表性的生物应用(包括抗菌/抗病毒性能、癌症治疗和生物传感)。最后,展示了未来面临的挑战和展望。
Biosens Bioelectron. 2022-11-15
Chem Asian J. 2022-4-1
J Nanobiotechnology. 2024-5-25
Acc Chem Res. 2020-7-21
Int J Nanomedicine. 2025-7-29
Biosensors (Basel). 2025-6-10
Nanomicro Lett. 2025-5-12
Nanomicro Lett. 2025-4-28