Suppr超能文献

基于深度学习的多组学生物标志物的癌症药物反应预测的 DeepInsight-3D 架构。

DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics.

机构信息

Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.

出版信息

Sci Rep. 2023 Feb 11;13(1):2483. doi: 10.1038/s41598-023-29644-3.

Abstract

Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.

摘要

现代肿瘤学提供了广泛的治疗方法,因此为特定患者选择最佳方案对于获得最佳疗效非常重要。多组学分析与基于人工智能的预测模型相结合,具有简化这些治疗决策的巨大潜力。然而,这些令人鼓舞的发展仍然受到数据集的高维度以及注释样本数量不足的严重阻碍。在这里,我们提出了一种新的基于深度学习的方法,从三种类型的多组学数据中预测患者特定的抗癌药物反应。所提出的 DeepInsight-3D 方法依赖于结构化数据到图像的转换,然后可以使用卷积神经网络,卷积神经网络对输入的高维度特别稳健,同时保留对变量之间高度复杂关系建模的能力。值得注意的是,我们证明在这种形式主义中,可以有效地使用图像的附加通道来容纳来自不同组学层的数据,同时隐式地编码它们之间的连接。DeepInsight-3D 在这项任务上的表现优于其他最先进的方法。所提出的改进可以促进未来针对不同癌症制定更好的个性化治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd6f/9922304/85053db36369/41598_2023_29644_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验