Lee Minchul
Department of Sports Medicine, College of Health Science, CHA University, Pocheon, Gyeonggi-do, Republic of Korea.
Phys Act Nutr. 2022 Dec;26(4):1-4. doi: 10.20463/pan.2022.0018. Epub 2022 Dec 31.
Exercise is gradually being recognized as an essential component of brain plasticity at the molecular, functional, and structural changes levels. What are the causes of the observed exercise reimbursements in neuroscience? Several types of exercises have been studied in various doses in neurological, physiological, psychological, and biochemical experiments. More clarity is required to reveal exercise-brain interactions such as optimal exercise condition variables and neuroplasticity.
This review briefly highlights the empirical evidence of the positive effects neuroprotective activity on neuroscientific advancement.
The key areas are as follows: (a) stress exercise model using rodents, (b) hippocampal activation and plasticity with exercise, (c) glycogen metabolism in the brain, and (d) adaptation as a high-intensity interval training model in animals involved in exercise-induced brain plasticity.
Overall, exercise-induced molecular, functional, and structural changes in the neuronal system may affect rodents' performance. This study emphasizes the significance of understanding exercise neuroscience and makes recommendations for future research.
运动正逐渐被视为在分子、功能和结构变化层面上大脑可塑性的重要组成部分。神经科学中观察到的运动补偿现象的原因是什么?在神经学、生理学、心理学和生物化学实验中,已经对几种不同剂量的运动类型进行了研究。需要更清晰地揭示运动与大脑的相互作用,如最佳运动条件变量和神经可塑性。
本综述简要强调了神经保护活性对神经科学进展产生积极影响的实证证据。
关键领域如下:(a)使用啮齿动物的应激运动模型,(b)运动引起的海马体激活和可塑性,(c)大脑中的糖原代谢,以及(d)作为参与运动诱导大脑可塑性的动物的高强度间歇训练模型的适应性。
总体而言,运动引起的神经元系统分子、功能和结构变化可能会影响啮齿动物的表现。本研究强调了理解运动神经科学的重要性,并为未来研究提出了建议。