Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Waisman Center and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA.
Neuropharmacology. 2019 Feb;145(Pt A):123-130. doi: 10.1016/j.neuropharm.2018.10.041. Epub 2018 Nov 2.
Exercise has profound benefits for brain function in animals and humans. In rodents, voluntary wheel running increases the production of new neurons and upregulates neurotrophin levels in the hippocampus, as well as improving synaptic plasticity, memory function and mood. The underlying cellular mechanisms, however, remain unresolved. Recent research indicates that peripheral organs such as skeletal muscle, liver and adipose tissue secrete factors during physical activity that may influence neuronal function. Here we used an in vitro cell assay and proteomic analysis to investigate the effects of proteins secreted from skeletal muscle cells on adult hippocampal neural progenitor cell (aNPC) differentiation. We also sought to identify the relevant molecules driving these effects. Specifically, we treated rat L6 skeletal muscle cells with the AMP-kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or vehicle (distilled water). We then collected the conditioned media (CM) and fractionated it using high-performance liquid chromatography (HPLC). Treatment of aNPCs with a specific fraction of the AICAR-CM upregulated expression of doublecortin (DCX) and Tuj1, markers of immature neurons. Proteomic analysis of this fraction identified proteins known to be involved in energy metabolism, cell migration, adhesion and neurogenesis. Culturing differentiating aNPCs in the presence of one of the factors, glycolytic enzyme glucose-6-phosphate isomerase (GPI), or AICAR-CM, increased the proportion of neuronal (Tuj1) and astrocytic, glial fibrillary acidic protein (GFAP) cells. Our study provides further evidence that proteins secreted from skeletal muscle cells may serve as a critical communication link to the brain through factors that enhance neural differentiation.
运动对动物和人类的大脑功能有深远的益处。在啮齿类动物中,自愿轮跑会增加新神经元的产生,并上调海马体中的神经营养因子水平,同时改善突触可塑性、记忆功能和情绪。然而,其潜在的细胞机制仍未解决。最近的研究表明,骨骼肌肉、肝脏和脂肪等外周器官在运动过程中会分泌一些因子,这些因子可能会影响神经元的功能。在这里,我们使用体外细胞培养和蛋白质组学分析来研究来自骨骼肌细胞的分泌蛋白对成年海马神经祖细胞(aNPC)分化的影响。我们还试图确定驱动这些影响的相关分子。具体来说,我们用 AMP 激酶(AMPK)激动剂 5-氨基咪唑-4-甲酰胺-1-β-D-呋喃核糖核苷酸(AICAR)或对照物(蒸馏水)处理大鼠 L6 骨骼肌细胞。然后,我们收集条件培养基(CM)并使用高效液相色谱(HPLC)对其进行分级。用 AICAR-CM 的特定级分处理 aNPC 会上调未成熟神经元标志物双皮质素(DCX)和 Tuj1 的表达。该级分的蛋白质组学分析鉴定出已知参与能量代谢、细胞迁移、黏附和神经发生的蛋白质。在存在一种因子(糖酵解酶葡萄糖-6-磷酸异构酶(GPI)或 AICAR-CM)的情况下培养分化的 aNPC,会增加神经元(Tuj1)和星形胶质细胞、胶质纤维酸性蛋白(GFAP)的比例。我们的研究进一步证明,骨骼肌细胞分泌的蛋白质可能通过增强神经分化的因子作为与大脑的关键通讯联系。