Oflaz Zarina, Yozgatligil Ceylan, Selcuk-Kestel A Sevtap
Department of Industrial Engineering, KTO Karatay University, Konya, Turkey.
Department of Statistics, Middle East Technical University, Ankara, Turkey.
Stat Methods Med Res. 2023 Apr;32(4):829-849. doi: 10.1177/09622802231155100. Epub 2023 Feb 12.
A range of chronic diseases have a significant influence on each other and share common risk factors. Comorbidity, which shows the existence of two or more diseases interacting or triggering each other, is an important measure for actuarial valuations. The main proposal of the study is to model parallel interacting processes describing two or more chronic diseases by a combination of hidden Markov theory and copula function. This study introduces a coupled hidden Markov model with the bivariate discrete copula function in the hidden process. To estimate the parameters of the model and deal with the numerical intractability of the log-likelihood, we use a variational expectation maximization algorithm. To perform the variational expectation maximization algorithm, a lower bound of the model's log-likelihood is defined, and estimators of the parameters are computed in the M-part. A possible numerical underflow occurring in the computation of forward-backward probabilities is solved. The simulation study is conducted for two different levels of association to assess the performance of the proposed model, resulting in satisfactory findings. The proposed model was applied to hospital appointment data from a private hospital. The model defines the dependency structure of unobserved disease data and its dynamics. The application results demonstrate that the model is useful for investigating disease comorbidity when only population dynamics over time and no clinical data are available.
一系列慢性疾病相互之间有重大影响且具有共同的风险因素。共病现象,即显示出两种或更多种疾病相互作用或相互触发的情况,是精算估值的一项重要指标。该研究的主要提议是通过隐马尔可夫理论和连接函数的组合来对描述两种或更多种慢性疾病的并行相互作用过程进行建模。本研究在隐藏过程中引入了具有二元离散连接函数的耦合隐马尔可夫模型。为了估计模型参数并处理对数似然的数值难处理性,我们使用变分期望最大化算法。为了执行变分期望最大化算法,定义了模型对数似然的下界,并在M步中计算参数估计值。解决了前向 - 后向概率计算中可能出现的数值下溢问题。针对两种不同关联水平进行了模拟研究,以评估所提出模型的性能,结果令人满意。所提出的模型应用于一家私立医院的数据。该模型定义了未观察到的疾病数据的依赖结构及其动态变化。应用结果表明,当仅有随时间变化的人群动态数据而无临床数据时,该模型对于研究疾病共病现象很有用。