Suppr超能文献

通过肌肉骨骼运动模拟从虚拟惯性传感器数据估计三维运动学和动力学。

Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations.

作者信息

Nitschke Marlies, Dorschky Eva, Leyendecker Sigrid, Eskofier Bjoern M, Koelewijn Anne D

机构信息

Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Institute of Applied Dynamics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

出版信息

Front Bioeng Biotechnol. 2024 Apr 2;12:1285845. doi: 10.3389/fbioe.2024.1285845. eCollection 2024.

Abstract

Portable measurement systems using inertial sensors enable motion capture outside the lab, facilitating longitudinal and large-scale studies in natural environments. However, estimating 3D kinematics and kinetics from inertial data for a comprehensive biomechanical movement analysis is still challenging. Machine learning models or stepwise approaches performing Kalman filtering, inverse kinematics, and inverse dynamics can lead to inconsistencies between kinematics and kinetics. We investigated the reconstruction of 3D kinematics and kinetics of arbitrary running motions from inertial sensor data using optimal control simulations of full-body musculoskeletal models. To evaluate the feasibility of the proposed method, we used marker tracking simulations created from optical motion capture data as a reference and for computing virtual inertial data such that the desired solution was known exactly. We generated the inertial tracking simulations by formulating optimal control problems that tracked virtual acceleration and angular velocity while minimizing effort without requiring a task constraint or an initial state. To evaluate the proposed approach, we reconstructed three trials each of straight running, curved running, and a v-cut of 10 participants. We compared the estimated inertial signals and biomechanical variables of the marker and inertial tracking simulations. The inertial data was tracked closely, resulting in low mean root mean squared deviations for pelvis translation (≤20.2 mm), angles (≤1.8 deg), ground reaction forces (≤1.1 BW%), joint moments (≤0.1 BWBH%), and muscle forces (≤5.4 BW%) and high mean coefficients of multiple correlation for all biomechanical variables . Accordingly, our results showed that optimal control simulations tracking 3D inertial data could reconstruct the kinematics and kinetics of individual trials of all running motions. The simulations led to mutually and dynamically consistent kinematics and kinetics, which allows researching causal chains, for example, to analyze anterior cruciate ligament injury prevention. Our work proved the feasibility of the approach using virtual inertial data. When using the approach in the future with measured data, the sensor location and alignment on the segment must be estimated, and soft-tissue artifacts are potential error sources. Nevertheless, we demonstrated that optimal control simulation tracking inertial data is highly promising for estimating 3D kinematics and kinetics for a comprehensive biomechanical analysis.

摘要

使用惯性传感器的便携式测量系统能够在实验室外进行运动捕捉,便于在自然环境中开展纵向和大规模研究。然而,从惯性数据估计三维运动学和动力学以进行全面的生物力学运动分析仍然具有挑战性。执行卡尔曼滤波、逆运动学和逆动力学的机器学习模型或逐步方法可能会导致运动学和动力学之间的不一致。我们使用全身肌肉骨骼模型的最优控制模拟,研究了从惯性传感器数据重建任意跑步运动的三维运动学和动力学。为了评估所提出方法的可行性,我们使用由光学运动捕捉数据创建的标记跟踪模拟作为参考,并用于计算虚拟惯性数据,以便确切知道所需的解决方案。我们通过制定最优控制问题来生成惯性跟踪模拟,该问题在最小化努力的同时跟踪虚拟加速度和角速度,而无需任务约束或初始状态。为了评估所提出的方法,我们重建了10名参与者的直线跑步、曲线跑步和v形切入各三次试验。我们比较了标记跟踪模拟和惯性跟踪模拟的估计惯性信号和生物力学变量。惯性数据被紧密跟踪,导致骨盆平移(≤20.2毫米)、角度(≤1.8度)、地面反作用力(≤1.1体重%)、关节力矩(≤0.1体重×身高%)和肌肉力量(≤5.4体重%)的平均均方根偏差较低,并且所有生物力学变量的平均多重相关系数较高。因此,我们的结果表明,跟踪三维惯性数据的最优控制模拟可以重建所有跑步运动单个试验的运动学和动力学。这些模拟导致了相互动态一致的运动学和动力学,这使得研究因果链成为可能,例如,分析前交叉韧带损伤的预防。我们的工作证明了使用虚拟惯性数据的方法的可行性。未来在使用实测数据应用该方法时,必须估计传感器在节段上的位置和对齐情况,并且软组织伪影是潜在的误差来源。尽管如此,我们证明了跟踪惯性数据的最优控制模拟在估计三维运动学和动力学以进行全面生物力学分析方面具有很大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/687f/11018991/8b13f8d32fdb/fbioe-12-1285845-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验