Lee Michelle Y Y, Kaestner Klaus H, Li Mingyao
Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia, PA, 19104, US.
bioRxiv. 2023 Feb 3:2023.02.01.526609. doi: 10.1101/2023.02.01.526609.
Single-cell RNA-sequencing (scRNA-seq) measures gene expression in single cells, while single-nucleus ATAC-sequencing (snATAC-seq) enables the quantification of chromatin accessibility in single nuclei. These two data types provide complementary information for deciphering cell types/states. However, when analyzed individually, scRNA-seq and snATAC-seq data often produce conflicting results regarding cell type/state assignment. In addition, there is a loss of power as the two modalities reflect the same underlying cell types/states. Recently, it has become possible to measure both gene expression and chromatin accessibility from the same nucleus. Such paired data make it possible to directly model the relationships between the two modalities. However, given the availability of the vast amount of single-modality data, it is desirable to integrate the paired and unpaired single-modality data to gain a comprehensive view of the cellular complexity. Here, we benchmarked the performance of seven existing single-cell multi-omic data integration methods. Specifically, we evaluated whether these methods are able to uncover peak-gene associations from single-modality data, and to what extent the multiome data can provide additional guidance for the analysis of the existing single-modality data. Our results indicate that multiome data are helpful for annotating single-modality data, but the number of cells in the multiome data is critical to ensure a good cell type annotation. Additionally, when generating a multiome dataset, the number of cells is more important than sequencing depth for cell type annotation. Lastly, Seurat v4 is the best at integrating scRNA-seq, snATAC-seq, and multiome data even in the presence of complex batch effects.
单细胞RNA测序(scRNA-seq)可测量单个细胞中的基因表达,而单核ATAC测序(snATAC-seq)则能够对单个细胞核中的染色质可及性进行定量分析。这两种数据类型为解读细胞类型/状态提供了互补信息。然而,单独分析时,scRNA-seq和snATAC-seq数据在细胞类型/状态分配方面往往会产生相互矛盾的结果。此外,由于这两种模式反映的是相同的潜在细胞类型/状态,因此存在效能损失。最近,已经能够从同一个细胞核中同时测量基因表达和染色质可及性。这种配对数据使得直接对两种模式之间的关系进行建模成为可能。然而,鉴于大量单模式数据的可用性,整合配对和未配对的单模式数据以全面了解细胞复杂性是很有必要的。在这里,我们对七种现有的单细胞多组学数据整合方法的性能进行了基准测试。具体而言,我们评估了这些方法是否能够从单模式数据中发现峰-基因关联,以及多组学数据能够在多大程度上为现有单模式数据的分析提供额外指导。我们的结果表明,多组学数据有助于注释单模式数据,但多组学数据中的细胞数量对于确保良好的细胞类型注释至关重要。此外,在生成多组学数据集时,细胞数量比测序深度对细胞类型注释更为重要。最后,即使存在复杂的批次效应,Seurat v4在整合scRNA-seq、snATAC-seq和多组学数据方面也是表现最佳的。