Suppr超能文献

sciCAN:基于循环一致对抗网络的单细胞染色质可及性和基因表达数据整合。

sciCAN: single-cell chromatin accessibility and gene expression data integration via cycle-consistent adversarial network.

机构信息

UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

NPJ Syst Biol Appl. 2022 Sep 12;8(1):33. doi: 10.1038/s41540-022-00245-6.

Abstract

The boom in single-cell technologies has brought a surge of high dimensional data that come from different sources and represent cellular systems from different views. With advances in these single-cell technologies, integrating single-cell data across modalities arises as a new computational challenge. Here, we present an adversarial approach, sciCAN, to integrate single-cell chromatin accessibility and gene expression data in an unsupervised manner. We benchmarked sciCAN with 5 existing methods in 5 scATAC-seq/scRNA-seq datasets, and we demonstrated that our method dealt with data integration with consistent performance across datasets and better balance of mutual transferring between modalities than the other 5 existing methods. We further applied sciCAN to 10X Multiome data and confirmed that the integrated representation preserves biological relationships within the hematopoietic hierarchy. Finally, we investigated CRISPR-perturbed single-cell K562 ATAC-seq and RNA-seq data to identify cells with related responses to different perturbations in these different modalities.

摘要

单细胞技术的繁荣带来了大量高维数据,这些数据来自不同的来源,代表了不同视角的细胞系统。随着这些单细胞技术的进步,跨模态整合单细胞数据成为一个新的计算挑战。在这里,我们提出了一种对抗性方法 sciCAN,用于在无监督的方式下整合单细胞染色质可及性和基因表达数据。我们在 5 个 scATAC-seq/scRNA-seq 数据集上用 5 种现有方法对 sciCAN 进行了基准测试,结果表明,我们的方法在数据集之间具有一致的性能,在模态之间的相互传递方面具有更好的平衡,优于其他 5 种现有方法。我们进一步将 sciCAN 应用于 10X Multiome 数据,并证实整合后的表示保留了造血层次结构内的生物学关系。最后,我们研究了 CRISPR 扰动的单细胞 K562 ATAC-seq 和 RNA-seq 数据,以识别在这些不同模态中对不同扰动具有相关反应的细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9101/9464763/783cdab9133c/41540_2022_245_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验