Suppr超能文献

基于心血管表型为患者定制个性化治疗方案。

Personalizing treatments for patients based on cardiovascular phenotyping.

作者信息

Leopold Jane A

机构信息

Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School.

出版信息

Expert Rev Precis Med Drug Dev. 2022;7(1):4-16. doi: 10.1080/23808993.2022.2028548. Epub 2022 Jan 24.

Abstract

INTRODUCTION

Cardiovascular disease persists as the leading cause of death worldwide despite continued advances in diagnostics and therapeutics. Our current approach to patients with cardiovascular disease is rooted in reductionism, which presupposes that all patients share a similar phenotype and will respond the same to therapy; however, this is unlikely as cardiovascular diseases exhibit complex heterogeneous phenotypes.

AREAS COVERED

With the advent of high-throughput platforms for omics testing, phenotyping cardiovascular diseases has advanced to incorporate large-scale molecular data with classical history, physical examination, and laboratory results. Findings from genomics, proteomics, and metabolomics profiling have been used to define more precise cardiovascular phenotypes and predict adverse outcomes in population-based and disease-specific patient cohorts. These molecular data have also been utilized to inform drug efficacy based on a patient's unique phenotype.

EXPERT OPINION

Multiscale phenotyping of cardiovascular disease has revealed diversity among patients that can be used to personalize pharmacotherapies and predict outcomes. Nonetheless, precision phenotyping for cardiovascular disease remains a nascent field that has not yet translated into widespread clinical practice despite its many potential advantages for patient care. Future endeavors that demonstrate improved pharmacotherapeutic responses and associated reduction in adverse events will facilitate mainstream adoption of precision cardiovascular phenotyping.

摘要

引言

尽管诊断和治疗技术不断进步,但心血管疾病仍是全球主要的死亡原因。我们目前治疗心血管疾病患者的方法基于还原论,该理论假定所有患者具有相似的表型,对治疗的反应也相同;然而,这是不太可能的,因为心血管疾病表现出复杂的异质表型。

涵盖领域

随着用于组学检测的高通量平台的出现,心血管疾病的表型分析已经发展到将大规模分子数据与经典病史、体格检查和实验室结果相结合。基因组学、蛋白质组学和代谢组学分析的结果已被用于定义更精确的心血管表型,并预测基于人群和特定疾病的患者队列中的不良结局。这些分子数据也已被用于根据患者独特的表型来指导药物疗效。

专家意见

心血管疾病的多尺度表型分析揭示了患者之间的差异,这些差异可用于个性化药物治疗和预测结局。尽管如此,心血管疾病的精准表型分析仍是一个新兴领域,尽管其对患者护理有许多潜在优势,但尚未转化为广泛的临床实践。未来那些能证明药物治疗反应改善且不良事件相关减少的努力将促进精准心血管表型分析的主流应用。

相似文献

1
Personalizing treatments for patients based on cardiovascular phenotyping.
Expert Rev Precis Med Drug Dev. 2022;7(1):4-16. doi: 10.1080/23808993.2022.2028548. Epub 2022 Jan 24.
2
Emerging Role of Precision Medicine in Cardiovascular Disease.
Circ Res. 2018 Apr 27;122(9):1302-1315. doi: 10.1161/CIRCRESAHA.117.310782.
3
Precision Cardio-Oncology.
J Nucl Med. 2019 Apr;60(4):443-450. doi: 10.2967/jnumed.118.220137. Epub 2019 Jan 17.
4
Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis.
Prog Mol Biol Transl Sci. 2022;190(1):101-125. doi: 10.1016/bs.pmbts.2022.02.002. Epub 2022 Mar 7.
6
Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm.
J Pers Med. 2022 Jan 7;12(1):66. doi: 10.3390/jpm12010066.
7
Integration of Omics and Phenotypic Data for Precision Medicine.
Methods Mol Biol. 2022;2486:19-35. doi: 10.1007/978-1-0716-2265-0_2.
9
Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis.
Hum Genomics. 2020 Oct 2;14(1):35. doi: 10.1186/s40246-020-00287-z.
10
High-throughput plant phenotyping: a role for metabolomics?
Trends Plant Sci. 2022 Jun;27(6):549-563. doi: 10.1016/j.tplants.2022.02.001. Epub 2022 Mar 3.

本文引用的文献

1
Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease.
Circulation. 2022 Feb;145(5):357-370. doi: 10.1161/CIRCULATIONAHA.121.055117. Epub 2021 Nov 24.
2
Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases.
Nat Metab. 2021 Nov;3(11):1476-1483. doi: 10.1038/s42255-021-00478-5. Epub 2021 Nov 8.
3
Ticagrelor versus Clopidogrel in Loss-of-Function Carriers with Stroke or TIA.
N Engl J Med. 2021 Dec 30;385(27):2520-2530. doi: 10.1056/NEJMoa2111749. Epub 2021 Oct 28.
4
Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality.
J Am Coll Cardiol. 2021 Oct 19;78(16):1621-1631. doi: 10.1016/j.jacc.2021.08.018.
5
Marfan syndrome.
Nat Rev Dis Primers. 2021 Sep 2;7(1):64. doi: 10.1038/s41572-021-00298-7.
6
Molecular Genetic Basis of Hypertrophic Cardiomyopathy.
Circ Res. 2021 May 14;128(10):1533-1553. doi: 10.1161/CIRCRESAHA.121.318346. Epub 2021 May 13.
8
Effect of CYP2C19 Genotype on Ischemic Outcomes During Oral P2Y Inhibitor Therapy: A Meta-Analysis.
JACC Cardiovasc Interv. 2021 Apr 12;14(7):739-750. doi: 10.1016/j.jcin.2021.01.024. Epub 2021 Mar 17.
10
Meta-analysis of probability estimates of worldwide variation of CYP2D6 and CYP2C19.
Transl Psychiatry. 2021 Feb 24;11(1):141. doi: 10.1038/s41398-020-01129-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验