Suppr超能文献

运用智能化整合临床与多组学数据分析来实践精准医学。

Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis.

机构信息

Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, USA.

Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson Street, New Brunswick, NJ, USA.

出版信息

Hum Genomics. 2020 Oct 2;14(1):35. doi: 10.1186/s40246-020-00287-z.

Abstract

Precision medicine aims to empower clinicians to predict the most appropriate course of action for patients with complex diseases like cancer, diabetes, cardiomyopathy, and COVID-19. With a progressive interpretation of the clinical, molecular, and genomic factors at play in diseases, more effective and personalized medical treatments are anticipated for many disorders. Understanding patient's metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic, and predictive biomarkers and paths ultimately providing optimal and personalized care for diverse, and targeted chronic and acute diseases. In clinical settings, we need to timely model clinical and multi-omics data to find statistical patterns across millions of features to identify underlying biologic pathways, modifiable risk factors, and actionable information that support early detection and prevention of complex disorders, and development of new therapies for better patient care. It is important to calculate quantitative phenotype measurements, evaluate variants in unique genes and interpret using ACMG guidelines, find frequency of pathogenic and likely pathogenic variants without disease indicators, and observe autosomal recessive carriers with a phenotype manifestation in metabolome. Next, ensuring security to reconcile noise, we need to build and train machine-learning prognostic models to meaningfully process multisource heterogeneous data to identify high-risk rare variants and make medically relevant predictions. The goal, today, is to facilitate implementation of mainstream precision medicine to improve the traditional symptom-driven practice of medicine, and allow earlier interventions using predictive diagnostics and tailoring better-personalized treatments. We strongly recommend automated implementation of cutting-edge technologies, utilizing machine learning (ML) and artificial intelligence (AI) approaches for the multimodal data aggregation, multifactor examination, development of knowledgebase of clinical predictors for decision support, and best strategies for dealing with relevant ethical issues.

摘要

精准医学旨在赋予临床医生预测患有复杂疾病(如癌症、糖尿病、心肌病和 COVID-19)患者最恰当的治疗方案的能力。通过对疾病中发挥作用的临床、分子和基因组因素进行深入解读,预计许多疾病的治疗效果将更加有效和个性化。结合临床数据理解患者的代谢组学和遗传构成,将显著有助于确定易感性、诊断、预后和预测生物标志物和途径,最终为各种慢性和急性疾病提供最佳和个性化的治疗。在临床环境中,我们需要及时对临床和多组学数据进行建模,以找到跨数百万个特征的统计模式,从而识别潜在的生物学途径、可改变的风险因素和可操作的信息,以支持复杂疾病的早期检测和预防,以及新疗法的开发,以改善患者的治疗效果。计算定量表型测量值、评估独特基因中的变体并使用 ACMG 指南进行解释、在没有疾病指标的情况下找到致病性和可能致病性变体的频率、观察具有表型表现的常染色体隐性携带者的代谢组,这些都是非常重要的。接下来,为了确保安全性以协调噪声,我们需要构建和训练机器学习预后模型,以有意义地处理多源异构数据,从而识别高风险的罕见变体,并进行具有医学相关性的预测。今天的目标是促进主流精准医学的实施,以改善传统的基于症状的医学实践,并通过预测性诊断进行更早的干预,并量身定制更好的个性化治疗。我们强烈建议自动化实施最先进的技术,利用机器学习 (ML) 和人工智能 (AI) 方法进行多模态数据聚合、多因素检查、开发用于决策支持的临床预测因子知识库,以及处理相关伦理问题的最佳策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57d0/7531153/bf757d8569bf/40246_2020_287_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验