Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
J Biol Phys. 2023 Mar;49(1):95-119. doi: 10.1007/s10867-023-09625-3. Epub 2023 Feb 13.
A subgroup of T cells called T-regulatory cells (Tregs) regulates the body's immune responses to maintain homeostasis and self-tolerance. Tregs are crucial for preventing illnesses like cancer and autoimmunity. However, contrasting patterns of Treg frequency are observed in different autoimmune diseases. The commonality of tumour necrosis factor receptor 2 (TNFR2) defects and decrease in Treg frequency on the onset of autoimmunity demands an in-depth study of the TNFR2 pathway. To unravel this mystery, we need to study the mechanism of cell survival and death in Tregs. Here, we construct an ordinary differential equation (ODE)-based model to capture the mechanism of cell survival and apoptosis in Treg cells via TNFR2 signalling. The sensitivity analysis reveals that the input stimulus, the concentration of tumour necrosis factor (TNF), is the most sensitive parameter for the model system. The model shows that the cell goes into survival or apoptosis via bistable switching. Through hysteretic switching, the system tries to cope with the changing stimuli. In order to understand how stimulus strength and feedback strength influence cell survival and death, we compute bifurcation diagrams and obtain cell fate maps. Our results indicate that the elevated TNF concentration and increased c-Jun N-terminal kinase (JNK) phosphorylation are the major contributors to the death of T-regulatory cells. Biological evidence cements our hypothesis and can be controlled by reducing the TNF concentration. Finally, the system was studied under stochastic perturbation to see the effect of noise on the system's dynamics. We observed that introducing random perturbations disrupts the bistability, reducing the system's bistable region, which can affect the system's normal functioning.
一小群被称为调节性 T 细胞(Tregs)的 T 细胞可以调节身体对免疫的反应,以维持体内平衡和自身耐受。Tregs 对于预防癌症和自身免疫等疾病至关重要。然而,不同自身免疫性疾病中 Treg 频率的模式却相反。肿瘤坏死因子受体 2(TNFR2)缺陷和自身免疫发作时 Treg 频率降低的共同性要求深入研究 TNFR2 途径。为了揭开这个谜团,我们需要研究 Tregs 中细胞存活和死亡的机制。在这里,我们构建了一个基于常微分方程(ODE)的模型,通过 TNFR2 信号来捕捉 Treg 细胞中细胞存活和凋亡的机制。敏感性分析表明,输入刺激物,即肿瘤坏死因子(TNF)的浓度,是模型系统中最敏感的参数。该模型表明,细胞通过双稳态切换进入存活或凋亡状态。通过滞后切换,系统试图应对不断变化的刺激。为了了解刺激强度和反馈强度如何影响细胞的存活和死亡,我们计算了分岔图并获得了细胞命运图。我们的结果表明,TNF 浓度升高和 JNK 磷酸化增加是导致 T 调节细胞死亡的主要因素。生物学证据证实了我们的假设,可以通过降低 TNF 浓度来控制。最后,对系统进行了随机扰动研究,以观察噪声对系统动力学的影响。我们观察到引入随机扰动会破坏双稳定性,减小系统的双稳区域,从而影响系统的正常功能。