Suppr超能文献

最近的转座元件爆发与真菌植物病原体基因的临近有关。

Recent transposable element bursts are associated with the proximity to genes in a fungal plant pathogen.

机构信息

Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.

出版信息

PLoS Pathog. 2023 Feb 14;19(2):e1011130. doi: 10.1371/journal.ppat.1011130. eCollection 2023 Feb.

Abstract

The activity of transposable elements (TEs) contributes significantly to pathogen genome evolution. TEs often destabilize genome integrity but may also confer adaptive variation in pathogenicity or resistance traits. De-repression of epigenetically silenced TEs often initiates bursts of transposition activity that may be counteracted by purifying selection and genome defenses. However, how these forces interact to determine the expansion routes of TEs within a pathogen species remains largely unknown. Here, we analyzed a set of 19 telomere-to-telomere genomes of the fungal wheat pathogen Zymoseptoria tritici. Phylogenetic reconstruction and ancestral state estimates of individual TE families revealed that TEs have undergone distinct activation and repression periods resulting in highly uneven copy numbers between genomes of the same species. Most TEs are clustered in gene poor niches, indicating strong purifying selection against insertions near coding sequences, or as a consequence of insertion site preferences. TE families with high copy numbers have low sequence divergence and strong signatures of defense mechanisms (i.e., RIP). In contrast, small non-autonomous TEs (i.e., MITEs) are less impacted by defense mechanisms and are often located in close proximity to genes. Individual TE families have experienced multiple distinct burst events that generated many nearly identical copies. We found that a Copia element burst was initiated from recent copies inserted substantially closer to genes compared to older copies. Overall, TE bursts tended to initiate from copies in GC-rich niches that escaped inactivation by genomic defenses. Our work shows how specific genomic environments features provide triggers for TE proliferation in pathogen genomes.

摘要

转座元件 (TEs) 的活性对病原体基因组的进化有重要贡献。TEs 经常破坏基因组的完整性,但也可能赋予致病性或抗性特征的适应性变异。表观遗传沉默的 TEs 的去抑制常常引发转座活性的爆发,而这些爆发可能会被纯化选择和基因组防御所抵消。然而,这些力量如何相互作用来决定 TE 在病原体物种内的扩张途径,在很大程度上仍然未知。在这里,我们分析了一组 19 个真菌小麦病原体小麦叶锈菌的端粒到端粒基因组。个别 TE 家族的系统发育重建和祖先状态估计表明,TE 经历了不同的激活和抑制期,导致同一物种的基因组之间的拷贝数极不均匀。大多数 TEs 聚集在基因贫瘠的生态位中,这表明在编码序列附近的插入或由于插入位点偏好而受到强烈的纯化选择。具有高拷贝数的 TE 家族具有低序列分化和强烈的防御机制特征(即 RIP)。相比之下,小的非自主 TE(即 MITEs)较少受到防御机制的影响,并且通常位于基因附近。个别 TE 家族经历了多次不同的爆发事件,产生了许多几乎相同的副本。我们发现,与较旧的拷贝相比,Copiae 元件的爆发是从最近插入的拷贝中启动的,这些拷贝更靠近基因。总的来说,TE 爆发往往从 GC 丰富的生态位中的拷贝开始,这些拷贝逃脱了基因组防御的失活。我们的工作展示了特定的基因组环境特征如何为病原体基因组中的 TE 增殖提供触发因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01ae/9970103/9d9bc16ed3a6/ppat.1011130.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验