Suppr超能文献

基于模态注意力和上下文多实例学习池化层的多实例卷积神经网络,用于有效区分交界性和恶性上皮性卵巢肿瘤。

Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors.

机构信息

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Jinan, Shandong 250109, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.

出版信息

Artif Intell Med. 2021 Nov;121:102194. doi: 10.1016/j.artmed.2021.102194. Epub 2021 Oct 12.

Abstract

Malignant epithelial ovarian tumors (MEOTs) are the most lethal gynecologic malignancies, accounting for 90% of ovarian cancer cases. By contrast, borderline epithelial ovarian tumors (BEOTs) have low malignant potential and are generally associated with a good prognosis. Accurate preoperative differentiation between BEOTs and MEOTs is crucial for determining the appropriate surgical strategies and improving the postoperative quality of life. Multimodal magnetic resonance imaging (MRI) is an essential diagnostic tool. Although state-of-the-art artificial intelligence technologies such as convolutional neural networks can be used for automated diagnoses, their application have been limited owing to their high demand for graphics processing unit memory and hardware resources when dealing with large 3D volumetric data. In this study, we used multimodal MRI with a multiple instance learning (MIL) method to differentiate between BEOT and MEOT. We proposed the use of MAC-Net, a multiple instance convolutional neural network (MICNN) with modality-based attention (MA) and contextual MIL pooling layer (C-MPL). The MA module can learn from the decision-making patterns of clinicians to automatically perceive the importance of different MRI modalities and achieve multimodal MRI feature fusion based on their importance. The C-MPL module uses strong prior knowledge of tumor distribution as an important reference and assesses contextual information between adjacent images, thus achieving a more accurate prediction. The performance of MAC-Net is superior, with an area under the receiver operating characteristic curve of 0.878, surpassing that of several known MICNN approaches. Therefore, it can be used to assist clinical differentiation between BEOTs and MEOTs.

摘要

恶性上皮性卵巢肿瘤(MEOT)是最致命的妇科恶性肿瘤,占卵巢癌病例的 90%。相比之下,交界性上皮性卵巢肿瘤(BEOT)恶性潜能低,通常与良好的预后相关。准确区分 BEOT 和 MEOT 对于确定适当的手术策略和提高术后生活质量至关重要。多模态磁共振成像(MRI)是一种重要的诊断工具。尽管最先进的人工智能技术,如卷积神经网络,可以用于自动诊断,但由于处理大型 3D 容积数据时对图形处理单元内存和硬件资源的要求很高,其应用受到限制。在本研究中,我们使用多模态 MRI 和多实例学习(MIL)方法来区分 BEOT 和 MEOT。我们提出使用基于模态的注意力(MA)和上下文 MIL 池化层(C-MPL)的多实例卷积神经网络(MICNN)MAC-Net。MA 模块可以从临床医生的决策模式中学习,自动感知不同 MRI 模态的重要性,并根据其重要性实现多模态 MRI 特征融合。C-MPL 模块利用肿瘤分布的强先验知识作为重要参考,并评估相邻图像之间的上下文信息,从而实现更准确的预测。MAC-Net 的性能优于几种已知的 MICNN 方法,其受试者工作特征曲线下面积为 0.878。因此,它可以用于辅助临床区分 BEOT 和 MEOT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验