文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度神经网络的超声图像分析用于鉴别良恶性卵巢肿瘤:与专家主观评估的比较。

Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment.

机构信息

School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.

Department of Clinical Science and Education, Karolinska Institutet, and Department of Obstetrics and Gynecology, Södersjukhuset, Stockholm, Sweden.

出版信息

Ultrasound Obstet Gynecol. 2021 Jan;57(1):155-163. doi: 10.1002/uog.23530.


DOI:10.1002/uog.23530
PMID:33142359
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7839489/
Abstract

OBJECTIVES: To develop and test the performance of computerized ultrasound image analysis using deep neural networks (DNNs) in discriminating between benign and malignant ovarian tumors and to compare its diagnostic accuracy with that of subjective assessment (SA) by an ultrasound expert. METHODS: We included 3077 (grayscale, n = 1927; power Doppler, n = 1150) ultrasound images from 758 women with ovarian tumors, who were classified prospectively by expert ultrasound examiners according to IOTA (International Ovarian Tumor Analysis) terms and definitions. Histological outcome from surgery (n = 634) or long-term (≥ 3 years) follow-up (n = 124) served as the gold standard. The dataset was split into a training set (n = 508; 314 benign and 194 malignant), a validation set (n = 100; 60 benign and 40 malignant) and a test set (n = 150; 75 benign and 75 malignant). We used transfer learning on three pre-trained DNNs: VGG16, ResNet50 and MobileNet. Each model was trained, and the outputs calibrated, using temperature scaling. An ensemble of the three models was then used to estimate the probability of malignancy based on all images from a given case. The DNN ensemble classified the tumors as benign or malignant (Ovry-Dx1 model); or as benign, inconclusive or malignant (Ovry-Dx2 model). The diagnostic performance of the DNN models, in terms of sensitivity and specificity, was compared to that of SA for classifying ovarian tumors in the test set. RESULTS: At a sensitivity of 96.0%, Ovry-Dx1 had a specificity similar to that of SA (86.7% vs 88.0%; P = 1.0). Ovry-Dx2 had a sensitivity of 97.1% and a specificity of 93.7%, when designating 12.7% of the lesions as inconclusive. By complimenting Ovry-Dx2 with SA in inconclusive cases, the overall sensitivity (96.0%) and specificity (89.3%) were not significantly different from using SA in all cases (P = 1.0). CONCLUSION: Ultrasound image analysis using DNNs can predict ovarian malignancy with a diagnostic accuracy comparable to that of human expert examiners, indicating that these models may have a role in the triage of women with an ovarian tumor. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

摘要

目的:开发并测试基于深度神经网络(DNN)的计算机化超声图像分析在鉴别良恶性卵巢肿瘤方面的性能,并与超声专家的主观评估(SA)的诊断准确性进行比较。

方法:我们纳入了 758 名患有卵巢肿瘤的女性的 3077 个(灰度,n=1927;功率多普勒,n=1150)超声图像。这些图像由超声专家根据 IOTA(国际卵巢肿瘤分析)术语和定义进行前瞻性分类。手术(n=634)或长期(≥3 年)随访(n=124)的组织学结果作为金标准。数据集分为训练集(n=508;314 个良性和 194 个恶性)、验证集(n=100;60 个良性和 40 个恶性)和测试集(n=150;75 个良性和 75 个恶性)。我们使用三种预训练的 DNN 进行迁移学习:VGG16、ResNet50 和 MobileNet。每个模型都使用温度缩放进行训练和输出校准。然后,使用三个模型的集合来估计给定病例中所有图像的恶性概率。DNN 集合将肿瘤分类为良性或恶性(Ovry-Dx1 模型);或分类为良性、不确定或恶性(Ovry-Dx2 模型)。比较了 DNN 模型在测试集中分类卵巢肿瘤的灵敏度和特异性,与 SA 的诊断性能。

结果:当敏感性为 96.0%时,Ovry-Dx1 的特异性与 SA 相似(86.7%比 88.0%;P=1.0)。当将 12.7%的病变指定为不确定时,Ovry-Dx2 的敏感性为 97.1%,特异性为 93.7%。通过在不确定病例中补充 Ovry-Dx2 和 SA,整体敏感性(96.0%)和特异性(89.3%)与在所有病例中使用 SA 无显著差异(P=1.0)。

结论:基于 DNN 的超声图像分析可以预测卵巢恶性肿瘤,其诊断准确性可与人类专家检查者相媲美,表明这些模型可能在卵巢肿瘤患者的分诊中发挥作用。© 2020 作者。约翰威立父子公司出版由国际妇产科超声学会代表超声在妇产科。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/298ff8052916/UOG-57-155-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/31e40a449b43/UOG-57-155-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/a1e4949d9066/UOG-57-155-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/90d5d3f748fa/UOG-57-155-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/298ff8052916/UOG-57-155-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/31e40a449b43/UOG-57-155-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/a1e4949d9066/UOG-57-155-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/90d5d3f748fa/UOG-57-155-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f2/7839489/298ff8052916/UOG-57-155-g004.jpg

相似文献

[1]
Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment.

Ultrasound Obstet Gynecol. 2021-1

[2]
Vessel morphology depicted by three-dimensional power Doppler ultrasound as second-stage test in adnexal tumors that are difficult to classify: prospective diagnostic accuracy study.

Ultrasound Obstet Gynecol. 2021-2

[3]
Prospective external validation of IOTA three-step strategy for characterizing and classifying adnexal masses and retrospective assessment of alternative two-step strategy using simple-rules risk.

Ultrasound Obstet Gynecol. 2019-5

[4]
Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods.

Ultrasound Obstet Gynecol. 2017-6

[5]
The Prospective External Validation of International Ovarian Tumor Analysis (IOTA) Simple Rules in the Hands of Level I and II Examiners.

Ultraschall Med. 2016-10

[6]
Performance of IOTA Simple Rules, Simple Rules risk assessment, ADNEX model and O-RADS in differentiating between benign and malignant adnexal lesions in North American women.

Ultrasound Obstet Gynecol. 2022-5

[7]
Clinical and ultrasound characteristics of surgically removed adnexal lesions with largest diameter ≤ 2.5 cm: a pictorial essay.

Ultrasound Obstet Gynecol. 2017-11

[8]
Subjective assessment and IOTA ADNEX model in evaluation of adnexal masses in patients with history of breast cancer.

Ultrasound Obstet Gynecol. 2023-10

[9]
Benign descriptors and ADNEX in two-step strategy to estimate risk of malignancy in ovarian tumors: retrospective validation in IOTA5 multicenter cohort.

Ultrasound Obstet Gynecol. 2023-2

[10]
Adnexal masses difficult to classify as benign or malignant using subjective assessment of gray-scale and Doppler ultrasound findings: logistic regression models do not help.

Ultrasound Obstet Gynecol. 2011-9-13

引用本文的文献

[1]
Hybrid artificial intelligence echogenic components-based diagnosis of adnexal masses on ultrasound.

Med Phys. 2025-7

[2]
Artificial Intelligence in Ultrasound-Based Diagnoses of Gynecological Tumors: A Systematic Review.

Cureus. 2025-6-12

[3]
Advancements in artificial intelligence for ultrasound diagnosis of ovarian cancer: a comprehensive review.

Front Oncol. 2025-6-12

[4]
Multimodal ultrasound-based radiomics and deep learning for differential diagnosis of O-RADS 4-5 adnexal masses.

Cancer Imaging. 2025-5-23

[5]
A weakly-supervised follicle segmentation method in ultrasound images.

Sci Rep. 2025-4-21

[6]
Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis.

Bioengineering (Basel). 2025-3-13

[7]
Clinical Application of Artificial Intelligence in Ultrasound Imaging for Oncology.

JMA J. 2025-1-15

[8]
Automatic segmentation model and machine learning model grounded in ultrasound radiomics for distinguishing between low malignant risk and intermediate-high malignant risk of adnexal masses.

Insights Imaging. 2025-1-13

[9]
International multicenter validation of AI-driven ultrasound detection of ovarian cancer.

Nat Med. 2025-1

[10]
Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study.

EClinicalMedicine. 2024-11-19

本文引用的文献

[1]
Logistic models and artificial intelligence in the sonographic assessment of adnexal masses - a systematic review of the literature.

Med Ultrason. 2020-11-18

[2]
International evaluation of an AI system for breast cancer screening.

Nature. 2020-1-1

[3]
Evaluation of machine learning methods with Fourier Transform features for classifying ovarian tumors based on ultrasound images.

PLoS One. 2019-7-26

[4]
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.

Nat Med. 2019-5-20

[5]
Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study.

Lancet Oncol. 2019-2-5

[6]
Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound.

Head Neck. 2019-2-4

[7]
Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study.

Lancet Oncol. 2018-12-21

[8]
Machine learning for medical ultrasound: status, methods, and future opportunities.

Abdom Radiol (NY). 2018-4

[9]
A deep learning framework for supporting the classification of breast lesions in ultrasound images.

Phys Med Biol. 2017-9-15

[10]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索