Suppr超能文献

一项减少妊娠期肥胖的移动健康干预措施(mami-educ):一项随机对照试验的方案

An mHealth Intervention to Reduce Gestational Obesity (mami-educ): Protocol for a Randomized Controlled Trial.

作者信息

Chiarello Delia Indira, Pardo Fabian, Moya Jessica, Pino Maricela, Rodríguez Andrea, Araneda María Eugenia, Bertini Ayleen, Gutiérrez Jaime

机构信息

Cellular Signaling and Differentiation Laboratory, School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile.

Metabolic Diseases Research Laboratory, Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley, Center for Biomedical Research, Universidad de Valparaíso, San Felipe, Chile.

出版信息

JMIR Res Protoc. 2023 Feb 15;12:e44456. doi: 10.2196/44456.

Abstract

BACKGROUND

The World Federation of Obesity warns that the main health problem of the next decade will be childhood obesity. It is known that factors such as gestational obesity produce profound effects on fetal programming and are strong predictors of overweight and obesity in children. Therefore, establishing healthy eating behaviors during pregnancy is the key to the primary prevention of the intergenerational transmission of obesity. Mobile health (mHealth) programs are potentially more effective than face-to-face interventions, especially during a public health emergency such as the COVID-19 outbreak.

OBJECTIVE

This study aims to evaluate the effectiveness of an mHealth intervention to reduce excessive weight gain in pregnant women who attend family health care centers.

METHODS

The design of the intervention corresponds to a classic randomized clinical trial. The participants are pregnant women in the first trimester of pregnancy who live in urban and semiurban areas. Before starting the intervention, a survey will be applied to identify the barriers and facilitators perceived by pregnant women to adopt healthy eating behaviors. The dietary intake will be estimated in the same way. The intervention will last for 12 weeks and consists of sending messages through a multimedia messaging service with food education, addressing the 3 domains of learning (cognitive, affective, and psychomotor). Descriptive statistics will be used to analyze the demographic, socioeconomic, and obstetric characteristics of the respondents. The analysis strategy follows the intention-to-treat principle. Logistic regression analysis will be used to compare the intervention with routine care on maternal pregnancy outcome and perinatal outcome.

RESULTS

The recruitment of study participants began in May 2022 and will end in May 2023. Results include the effectiveness of the intervention in reducing the incidence of excessive gestational weight gain. We also will examine the maternal-fetal outcome as well as the barriers and facilitators that influence the weight gain of pregnant women.

CONCLUSIONS

Data from this effectiveness trial will determine whether mami-educ successfully reduces rates of excessive weight gain during pregnancy. If successful, the findings of this study will generate knowledge to design and implement personalized prevention strategies for gestational obesity that can be included in routine primary care.

TRIAL REGISTRATION

ClinicalTrials.gov NCT05114174; https://clinicaltrials.gov/ct2/show/NCT05114174.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/44456.

摘要

背景

世界肥胖联合会警告称,未来十年主要的健康问题将是儿童肥胖。众所周知,妊娠期肥胖等因素会对胎儿编程产生深远影响,并且是儿童超重和肥胖的有力预测因素。因此,孕期建立健康的饮食行为是预防肥胖代际传播的关键。移动健康(mHealth)项目可能比面对面干预更有效,尤其是在像新冠疫情这样的突发公共卫生事件期间。

目的

本研究旨在评估一项移动健康干预措施对减少前往家庭医疗保健中心就诊的孕妇过度体重增加的有效性。

方法

干预设计为经典的随机临床试验。参与者为居住在城市和半城市地区、处于妊娠早期的孕妇。在开始干预前,将进行一项调查,以确定孕妇在采取健康饮食行为方面所感知到的障碍和促进因素。饮食摄入量也将以同样的方式进行估算。干预将持续12周,包括通过多媒体信息服务发送包含饮食教育内容的信息,涉及学习的三个领域(认知、情感和心理运动)。描述性统计将用于分析受访者的人口统计学、社会经济和产科特征。分析策略遵循意向性分析原则。将使用逻辑回归分析来比较干预措施与常规护理在孕产妇妊娠结局和围产期结局方面的差异。

结果

研究参与者的招募于2022年5月开始,将于2023年5月结束。结果包括干预措施在降低妊娠期过度体重增加发生率方面的有效性。我们还将研究母婴结局以及影响孕妇体重增加的障碍和促进因素。

结论

这项有效性试验的数据将确定“妈妈教育”是否成功降低了孕期过度体重增加的发生率。如果成功,本研究的结果将为设计和实施可纳入常规初级保健的妊娠期肥胖个性化预防策略提供知识。

试验注册

ClinicalTrials.gov NCT05114174;https://clinicaltrials.gov/ct2/show/NCT05114174。

国际注册报告识别码(IRRID):DERR1-10.2196/44456。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34e7/9978990/e46612ba590a/resprot_v12i1e44456_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验