Suppr超能文献

使用解剖学极端病例对骨盆自动分割算法进行压力测试。

Stress-testing pelvic autosegmentation algorithms using anatomical edge cases.

作者信息

Kanwar Aasheesh, Merz Brandon, Claunch Cheryl, Rana Shushan, Hung Arthur, Thompson Reid F

机构信息

Department of Radiation Medicine, Oregon Health and Sciences University, Portland, OR, United States.

Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States.

出版信息

Phys Imaging Radiat Oncol. 2023 Jan 16;25:100413. doi: 10.1016/j.phro.2023.100413. eCollection 2023 Jan.

Abstract

Commercial autosegmentation has entered clinical use, however real-world performance may suffer in certain cases. We aimed to assess the influence of anatomic variants on performance. We identified 112 prostate cancer patients with anatomic variations (edge cases). Pelvic anatomy was autosegmented using three commercial tools. To evaluate performance, Dice similarity coefficients, and mean surface and 95% Hausdorff distances were calculated versus clinician-delineated references. Deep learning autosegmentation outperformed atlas-based and model-based methods. However, edge case performance was lower versus the normal cohort (0.12 mean DSC reduction). Anatomic variation presents challenges to commercial autosegmentation.

摘要

商业自动分割技术已进入临床应用,然而在某些情况下,其在实际应用中的性能可能会受到影响。我们旨在评估解剖变异对性能的影响。我们识别出112例具有解剖变异的前列腺癌患者(边缘病例)。使用三种商业工具对盆腔解剖结构进行自动分割。为了评估性能,计算了与临床医生划定的参考标准相比的骰子相似系数、平均表面距离和95%豪斯多夫距离。深度学习自动分割优于基于图谱和基于模型的方法。然而,与正常队列相比,边缘病例的性能较低(平均骰子相似系数降低0.12)。解剖变异给商业自动分割带来了挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da0/9922913/25cc6b62cd86/gr1.jpg

相似文献

1
Stress-testing pelvic autosegmentation algorithms using anatomical edge cases.
Phys Imaging Radiat Oncol. 2023 Jan 16;25:100413. doi: 10.1016/j.phro.2023.100413. eCollection 2023 Jan.
4
7
A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.
Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):95-100. doi: 10.1016/j.ijrobp.2011.07.046. Epub 2012 May 8.
8
Comparative evaluation of a prototype deep learning algorithm for autosegmentation of normal tissues in head and neck radiotherapy.
Radiother Oncol. 2022 Sep;174:52-58. doi: 10.1016/j.radonc.2022.06.024. Epub 2022 Jul 9.
9
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Med Phys. 2019 Feb;46(2):576-589. doi: 10.1002/mp.13300. Epub 2018 Dec 17.

引用本文的文献

1
Pelvic dose accumulation accuracy in a CBCT based online adaptive radiotherapy system.
J Appl Clin Med Phys. 2025 Jul;26(7):e70160. doi: 10.1002/acm2.70160.
2
Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas.
Radiat Oncol. 2024 Nov 21;19(1):168. doi: 10.1186/s13014-024-02554-y.
3
Geometric and dosimetric evaluation for breast and regional nodal auto-segmentation structures.
J Appl Clin Med Phys. 2024 Oct;25(10):e14461. doi: 10.1002/acm2.14461. Epub 2024 Aug 2.
4
A clinical evaluation of the performance of five commercial artificial intelligence contouring systems for radiotherapy.
Front Oncol. 2023 Aug 4;13:1213068. doi: 10.3389/fonc.2023.1213068. eCollection 2023.

本文引用的文献

1
Automated Tumor Segmentation in Radiotherapy.
Semin Radiat Oncol. 2022 Oct;32(4):319-329. doi: 10.1016/j.semradonc.2022.06.002.
2
General and custom deep learning autosegmentation models for organs in head and neck, abdomen, and male pelvis.
Med Phys. 2022 Mar;49(3):1686-1700. doi: 10.1002/mp.15507. Epub 2022 Feb 7.
3
Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy.
Phys Imaging Radiat Oncol. 2021 Jul 28;19:96-101. doi: 10.1016/j.phro.2021.07.009. eCollection 2021 Jul.
5
Metrics to evaluate the performance of auto-segmentation for radiation treatment planning: A critical review.
Radiother Oncol. 2021 Jul;160:185-191. doi: 10.1016/j.radonc.2021.05.003. Epub 2021 May 11.
6
Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy.
Radiother Oncol. 2021 Jun;159:1-7. doi: 10.1016/j.radonc.2021.02.040. Epub 2021 Mar 3.
7
The myth of generalisability in clinical research and machine learning in health care.
Lancet Digit Health. 2020 Sep;2(9):e489-e492. doi: 10.1016/S2589-7500(20)30186-2. Epub 2020 Aug 24.
8
Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.
Pract Radiat Oncol. 2021 Jan-Feb;11(1):e80-e89. doi: 10.1016/j.prro.2020.05.013. Epub 2020 Jun 27.
9
Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy.
Phys Imaging Radiat Oncol. 2019 Oct;12:80-86. doi: 10.1016/j.phro.2019.11.006. Epub 2019 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验