BC Cancer - Vancouver, 600 W 10th Ave, Rm 4550, Vancouver, BC, V5Z 4E6, Canada.
BC Cancer - Fraser Valley, 13750 96th Avenue, Surrey, BC, V3V 1Z2, Canada.
Radiat Oncol. 2021 Jun 8;16(1):101. doi: 10.1186/s13014-021-01831-4.
PURPOSE: We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical radiotherapy (RT) planning workflow and report on user experience. METHODS AND MATERIALS: DC models were implemented at two cancer centers and used to generate OAR and CTVs for all patients undergoing RT for a central nervous system (CNS), head and neck (H&N), or prostate cancer. Radiation Therapists/Dosimetrists and Radiation Oncologists completed post-contouring surveys rating the degree of edits required for DCs (1 = minimal, 5 = significant) and overall DC satisfaction (1 = poor, 5 = high). Unedited DCs were compared to the edited treatment approved contours using Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD). RESULTS: Between September 19, 2019 and March 6, 2020, DCs were generated on approximately 551 eligible cases. 203 surveys were collected on 27 CNS, 54 H&N, and 93 prostate RT plans, resulting in an overall survey compliance rate of 32%. The majority of OAR DCs required minimal edits subjectively (mean editing score ≤ 2) and objectively (mean DSC and 95% HD was ≥ 0.90 and ≤ 2.0 mm). Mean OAR satisfaction score was 4.1 for CNS, 4.4 for H&N, and 4.6 for prostate structures. Overall CTV satisfaction score (n = 25), which encompassed the prostate, seminal vesicles, and neck lymph node volumes, was 4.1. CONCLUSIONS: Previously validated OAR DC models for CNS, H&N, and prostate RT planning required minimal subjective and objective edits and resulted in a positive user experience, although low survey compliance was a concern. CTV DC model evaluation was even more limited, but high user satisfaction suggests that they may have served as appropriate starting points for patient specific edits.
目的:我们最近描述了基于深度学习的自动分割轮廓(DC)模型在危及器官(OAR)和临床靶区(CTV)中的验证。在这项研究中,我们评估了在临床放射治疗(RT)计划工作流程中实施的 DC 模型的性能,并报告了用户体验。
方法与材料:在两个癌症中心实施了 DC 模型,用于为所有接受中枢神经系统(CNS)、头颈部(H&N)或前列腺癌 RT 的患者生成 OAR 和 CTV。放射治疗师/剂量师和放射肿瘤学家完成了轮廓后调查,对 DC 所需的编辑程度进行评分(1=最小,5=显著)和整体 DC 满意度(1=差,5=高)。使用 Dice 相似系数(DSC)和 95% Hausdorff 距离(HD)比较未经编辑的 DC 与经编辑的治疗批准轮廓。
结果:2019 年 9 月 19 日至 2020 年 3 月 6 日,大约有 551 例符合条件的病例生成了 DC。对 27 例 CNS、54 例 H&N 和 93 例前列腺 RT 计划进行了 203 次调查,总体调查合规率为 32%。大多数 OAR DC 主观上需要最小的编辑(平均编辑评分≤2)和客观上(平均 DSC 和 95% HD≥0.90 和≤2.0mm)。CNS 的平均 OAR 满意度评分为 4.1,H&N 为 4.4,前列腺结构为 4.6。总体 CTV 满意度评分(n=25),包括前列腺、精囊和颈部淋巴结体积,为 4.1。
结论:经过验证的用于 CNS、H&N 和前列腺 RT 计划的 OAR DC 模型需要最小的主观和客观编辑,并且用户体验良好,尽管调查合规率低令人关注。CTV DC 模型评估甚至更为有限,但高用户满意度表明,它们可能成为患者特定编辑的合适起点。
J Appl Clin Med Phys. 2024-9
Int J Environ Res Public Health. 2022-7-25
J Appl Clin Med Phys. 2024-10
J Med Internet Res. 2025-7-21
BMC Med Inform Decis Mak. 2025-7-15
Clin Med Insights Oncol. 2024-12-13
Radiat Oncol. 2024-11-21
Radiother Oncol. 2021-6
Phys Imaging Radiat Oncol. 2020-11-30
Br J Radiol. 2019-8