文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的放射治疗计划结构自动分割的实现:两个癌症中心的工作流程研究。

Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.

机构信息

BC Cancer - Vancouver, 600 W 10th Ave, Rm 4550, Vancouver, BC, V5Z 4E6, Canada.

BC Cancer - Fraser Valley, 13750 96th Avenue, Surrey, BC, V3V 1Z2, Canada.

出版信息

Radiat Oncol. 2021 Jun 8;16(1):101. doi: 10.1186/s13014-021-01831-4.


DOI:10.1186/s13014-021-01831-4
PMID:34103062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8186196/
Abstract

PURPOSE: We recently described the validation of deep learning-based auto-segmented contour (DC) models for organs at risk (OAR) and clinical target volumes (CTV). In this study, we evaluate the performance of implemented DC models in the clinical radiotherapy (RT) planning workflow and report on user experience. METHODS AND MATERIALS: DC models were implemented at two cancer centers and used to generate OAR and CTVs for all patients undergoing RT for a central nervous system (CNS), head and neck (H&N), or prostate cancer. Radiation Therapists/Dosimetrists and Radiation Oncologists completed post-contouring surveys rating the degree of edits required for DCs (1 = minimal, 5 = significant) and overall DC satisfaction (1 = poor, 5 = high). Unedited DCs were compared to the edited treatment approved contours using Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD). RESULTS: Between September 19, 2019 and March 6, 2020, DCs were generated on approximately 551 eligible cases. 203 surveys were collected on 27 CNS, 54 H&N, and 93 prostate RT plans, resulting in an overall survey compliance rate of 32%. The majority of OAR DCs required minimal edits subjectively (mean editing score ≤ 2) and objectively (mean DSC and 95% HD was ≥ 0.90 and ≤ 2.0 mm). Mean OAR satisfaction score was 4.1 for CNS, 4.4 for H&N, and 4.6 for prostate structures. Overall CTV satisfaction score (n = 25), which encompassed the prostate, seminal vesicles, and neck lymph node volumes, was 4.1. CONCLUSIONS: Previously validated OAR DC models for CNS, H&N, and prostate RT planning required minimal subjective and objective edits and resulted in a positive user experience, although low survey compliance was a concern. CTV DC model evaluation was even more limited, but high user satisfaction suggests that they may have served as appropriate starting points for patient specific edits.

摘要

目的:我们最近描述了基于深度学习的自动分割轮廓(DC)模型在危及器官(OAR)和临床靶区(CTV)中的验证。在这项研究中,我们评估了在临床放射治疗(RT)计划工作流程中实施的 DC 模型的性能,并报告了用户体验。

方法与材料:在两个癌症中心实施了 DC 模型,用于为所有接受中枢神经系统(CNS)、头颈部(H&N)或前列腺癌 RT 的患者生成 OAR 和 CTV。放射治疗师/剂量师和放射肿瘤学家完成了轮廓后调查,对 DC 所需的编辑程度进行评分(1=最小,5=显著)和整体 DC 满意度(1=差,5=高)。使用 Dice 相似系数(DSC)和 95% Hausdorff 距离(HD)比较未经编辑的 DC 与经编辑的治疗批准轮廓。

结果:2019 年 9 月 19 日至 2020 年 3 月 6 日,大约有 551 例符合条件的病例生成了 DC。对 27 例 CNS、54 例 H&N 和 93 例前列腺 RT 计划进行了 203 次调查,总体调查合规率为 32%。大多数 OAR DC 主观上需要最小的编辑(平均编辑评分≤2)和客观上(平均 DSC 和 95% HD≥0.90 和≤2.0mm)。CNS 的平均 OAR 满意度评分为 4.1,H&N 为 4.4,前列腺结构为 4.6。总体 CTV 满意度评分(n=25),包括前列腺、精囊和颈部淋巴结体积,为 4.1。

结论:经过验证的用于 CNS、H&N 和前列腺 RT 计划的 OAR DC 模型需要最小的主观和客观编辑,并且用户体验良好,尽管调查合规率低令人关注。CTV DC 模型评估甚至更为有限,但高用户满意度表明,它们可能成为患者特定编辑的合适起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/8cf176210f3f/13014_2021_1831_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/27078edcf61a/13014_2021_1831_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/b5e4d757b54e/13014_2021_1831_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/468aef7dd2b3/13014_2021_1831_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/8cf176210f3f/13014_2021_1831_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/27078edcf61a/13014_2021_1831_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/b5e4d757b54e/13014_2021_1831_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/468aef7dd2b3/13014_2021_1831_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/8186196/8cf176210f3f/13014_2021_1831_Fig4_HTML.jpg

相似文献

[1]
Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.

Radiat Oncol. 2021-6-8

[2]
Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.

Radiother Oncol. 2020-3

[3]
The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer.

Radiat Oncol. 2021-6-23

[4]
Landmark-based auto-contouring of clinical target volumes for radiotherapy of nasopharyngeal cancer.

J Appl Clin Med Phys. 2024-9

[5]
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.

Radiat Oncol. 2021-2-25

[6]
Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers.

J Cancer Res Ther. 2024-4-1

[7]
Prospects for daily online adaptive radiotherapy via ethos for prostate cancer patients without nodal involvement using unedited CBCT auto-segmentation.

J Appl Clin Med Phys. 2021-10

[8]
Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.

Phys Med Biol. 2018-7-11

[9]
Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.

Int J Environ Res Public Health. 2022-7-25

[10]
Deep learning based clinical target volumes contouring for prostate cancer: Easy and efficient application.

J Appl Clin Med Phys. 2024-10

引用本文的文献

[1]
Factors Affecting the Receptiveness of Chinese Internists and Surgeons Toward Artificial Intelligence-Driven Drug Prescription: Protocol for a Systematic Survey Study.

JMIR Res Protoc. 2025-8-14

[2]
Facilitators and Barriers to Implementing AI in Routine Medical Imaging: Systematic Review and Qualitative Analysis.

J Med Internet Res. 2025-7-21

[3]
Deep learning-based delineation of whole-body organs at risk empowering adaptive radiotherapy.

BMC Med Inform Decis Mak. 2025-7-15

[4]
Can Deep Learning-Based Auto-Contouring Software Achieve Accurate Pelvic Volume Delineation in Volumetric Image-Guided Radiotherapy for Prostate Cancer? A Preliminary Multicentric Analysis.

Curr Oncol. 2025-5-30

[5]
Trade-off of different deep learning-based auto-segmentation approaches for treatment planning of pediatric craniospinal irradiation autocontouring of OARs for pediatric CSI.

Med Phys. 2025-6

[6]
Evaluation and failure analysis of four commercial deep learning-based autosegmentation software for abdominal organs at risk.

J Appl Clin Med Phys. 2025-4

[7]
Prospective evaluation of artificial intelligence (AI) applications for use in cancer pathways following diagnosis: a systematic review.

BMJ Oncol. 2024-5-10

[8]
Synthesizing Efficiency Tools in Radiotherapy to Increase Patient Flow: A Comprehensive Literature Review.

Clin Med Insights Oncol. 2024-12-13

[9]
Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas.

Radiat Oncol. 2024-11-21

[10]
Clinical commissioning and introduction of an in-house artificial intelligence (AI) platform for automated head and neck intensity modulated radiation therapy (IMRT) treatment planning.

J Appl Clin Med Phys. 2025-1

本文引用的文献

[1]
Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy.

Radiother Oncol. 2021-6

[2]
Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.

Radiat Oncol. 2021-2-25

[3]
Machine learning applications in radiation oncology: Current use and needs to support clinical implementation.

Phys Imaging Radiat Oncol. 2020-11-30

[4]
Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer.

Radiother Oncol. 2020-12

[5]
Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.

Radiother Oncol. 2020-12

[6]
Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy.

Pract Radiat Oncol. 2021

[7]
Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.

Radiother Oncol. 2020-3

[8]
Normal measurements of the optic nerve, optic nerve sheath and optic chiasm in the adult population.

SA J Radiol. 2019-11-5

[9]
Applications and limitations of machine learning in radiation oncology.

Br J Radiol. 2019-8

[10]
Clinical Evaluation of Commercial Atlas-Based Auto-Segmentation in the Head and Neck Region.

Front Oncol. 2019-4-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索