Savjani Ricky R, Lauria Michael, Bose Supratik, Deng Jie, Yuan Ye, Andrearczyk Vincent
University of California, Department of Radiation Oncology, Los Angeles, CA; Varian Medical Systems, A Siemens Healthineers Company, Applied Research, Palo Alto, CA.
Graduate Program in Physics and Biology in Medicine, Los Angeles, CA.
Semin Radiat Oncol. 2022 Oct;32(4):319-329. doi: 10.1016/j.semradonc.2022.06.002.
Autosegmentation of gross tumor volumes holds promise to decrease clinical demand and to provide consistency across clinicians and institutions for radiation treatment planning. Additionally, autosegmentation can enable imaging analyses such as radiomics to construct and deploy large studies with thousands of patients. Here, we review modern results that utilize deep learning approaches to segment tumors in 5 major clinical sites: brain, head and neck, thorax, abdomen, and pelvis. We focus on approaches that inch closer to clinical adoption, highlighting winning entries in international competitions, unique network architectures, and novel ways of overcoming specific challenges. We also broadly discuss the future of gross tumor volumes autosegmentation and the remaining barriers that must be overcome before widespread replacement or augmentation of manual contouring.
大体肿瘤体积的自动分割有望减少临床需求,并在放疗计划中为临床医生和机构提供一致性。此外,自动分割能够实现诸如影像组学等成像分析,以构建和开展涉及数千名患者的大型研究。在此,我们回顾利用深度学习方法对5个主要临床部位(脑、头颈、胸部、腹部和骨盆)的肿瘤进行分割的现代研究成果。我们重点关注更接近临床应用的方法,突出国际竞赛中的获奖作品、独特的网络架构以及克服特定挑战的新颖方法。我们还广泛讨论了大体肿瘤体积自动分割的未来,以及在广泛取代或辅助手动勾勒轮廓之前必须克服的剩余障碍。