Suppr超能文献

一种用于预测慢性乙型肝炎患者恶化路径的分层多标签图注意网络方法。

A hierarchical multilabel graph attention network method to predict the deterioration paths of chronic hepatitis B patients.

机构信息

Department of Operations and Information Systems, David Eccles School of Business, University of Utah, Salt Lake City, Utah, USA.

Department of Information Systems, College of Business, California State University Long Beach, Long Beach, California, USA.

出版信息

J Am Med Inform Assoc. 2023 Apr 19;30(5):846-858. doi: 10.1093/jamia/ocad008.

Abstract

OBJECTIVE

Estimating the deterioration paths of chronic hepatitis B (CHB) patients is critical for physicians' decisions and patient management. A novel, hierarchical multilabel graph attention-based method aims to predict patient deterioration paths more effectively. Applied to a CHB patient data set, it offers strong predictive utilities and clinical value.

MATERIALS AND METHODS

The proposed method incorporates patients' responses to medications, diagnosis event sequences, and outcome dependencies to estimate deterioration paths. From the electronic health records maintained by a major healthcare organization in Taiwan, we collect clinical data about 177 959 patients diagnosed with hepatitis B virus infection. We use this sample to evaluate the proposed method's predictive efficacy relative to 9 existing methods, as measured by precision, recall, F-measure, and area under the curve (AUC).

RESULTS

We use 20% of the sample as holdouts to test each method's prediction performance. The results indicate that our method consistently and significantly outperforms all benchmark methods. It attains the highest AUC, with a 4.8% improvement over the best-performing benchmark, as well as 20.9% and 11.4% improvements in precision and F-measures, respectively. The comparative results demonstrate that our method is more effective for predicting CHB patients' deterioration paths than existing predictive methods.

DISCUSSION AND CONCLUSION

The proposed method underscores the value of patient-medication interactions, temporal sequential patterns of distinct diagnosis, and patient outcome dependencies for capturing dynamics that underpin patient deterioration over time. Its efficacious estimates grant physicians a more holistic view of patient progressions and can enhance their clinical decision-making and patient management.

摘要

目的

估计慢性乙型肝炎(CHB)患者的恶化路径对于医生的决策和患者管理至关重要。一种新颖的分层多标签图注意力方法旨在更有效地预测患者的恶化路径。将其应用于 CHB 患者数据集,可提供强大的预测效用和临床价值。

材料与方法

该方法整合了患者对药物的反应、诊断事件序列和结果依赖性,以估计恶化路径。从台湾一家主要医疗机构的电子健康记录中,我们收集了 177959 名乙型肝炎病毒感染患者的临床数据。我们使用该样本评估所提出的方法相对于 9 种现有方法的预测效果,以精度、召回率、F 值和曲线下面积(AUC)来衡量。

结果

我们使用样本的 20%作为保留样本来测试每种方法的预测性能。结果表明,我们的方法始终显著优于所有基准方法。它获得了最高的 AUC,比表现最好的基准方法提高了 4.8%,精度和 F 值分别提高了 20.9%和 11.4%。比较结果表明,与现有预测方法相比,我们的方法在预测 CHB 患者的恶化路径方面更为有效。

讨论与结论

该方法强调了患者-药物相互作用、不同诊断的时间序列模式以及患者结果依赖性在捕捉随时间推移而导致患者恶化的动态方面的价值。其有效的估计为医生提供了更全面的患者进展视图,并可以增强他们的临床决策和患者管理。

相似文献

6

本文引用的文献

1
Graph convolutional networks: a comprehensive review.图卷积网络:全面综述。
Comput Soc Netw. 2019;6(1):11. doi: 10.1186/s40649-019-0069-y. Epub 2019 Nov 10.
5
Liver cirrhosis.肝硬化。
Lancet. 2021 Oct 9;398(10308):1359-1376. doi: 10.1016/S0140-6736(21)01374-X. Epub 2021 Sep 17.
7
Learning With Multiclass AUC: Theory and Algorithms.多类别AUC学习:理论与算法
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7747-7763. doi: 10.1109/TPAMI.2021.3101125. Epub 2022 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验