Suppr超能文献

DNA 酶和纳米酶的融合在冠酶中的应用。

Amalgamation of DNAzymes and Nanozymes in a Coronazyme.

机构信息

Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, Jiangsu, China.

出版信息

J Am Chem Soc. 2023 Mar 15;145(10):5750-5758. doi: 10.1021/jacs.2c12367. Epub 2023 Feb 16.

Abstract

Artificial enzymes such as nanozymes and DNAzymes are economical and stable alternatives to natural enzymes. By coating Au nanoparticles (AuNPs) with a DNA corona (AuNP@DNA), we amalgamated nanozymes and DNAzymes into a new artificial enzyme with catalytic efficiency 5 times higher than AuNP nanozymes, 10 times higher than other nanozymes, and significantly greater than most of the DNAzymes on the same oxidation reaction. The AuNP@DNA demonstrates excellent specificity as its reactivity on a reduction reaction does not change with respect to pristine AuNP. Single-molecule fluorescence and force spectroscopies and density functional theory (DFT) simulations indicate a long-range oxidation reaction initiated by radical production on the AuNP surface, followed by radical transport to the DNA corona, where the binding and turnover of substrates take place. The AuNP@DNA is named coronazyme because of its natural enzyme mimicking capability through the well-orchestrated structures and synergetic functions. By incorporating different nanocores and corona materials beyond DNAs, we anticipate that the coronazymes represent generic enzyme mimics to carry out versatile reactions in harsh environments.

摘要

人工酶,如纳米酶和脱氧核酶,是天然酶的经济且稳定的替代品。通过在金纳米颗粒 (AuNPs) 表面涂覆一层 DNA 外壳 (AuNP@DNA),我们将纳米酶和脱氧核酶结合成一种新型人工酶,其催化效率比 AuNP 纳米酶高 5 倍,比其他纳米酶高 10 倍,比大多数相同氧化反应的脱氧核酶高得多。AuNP@DNA 表现出优异的特异性,因为其在还原反应中的反应性相对于原始 AuNP 没有变化。单分子荧光和力谱以及密度泛函理论 (DFT) 模拟表明,氧化反应是由 AuNP 表面上自由基的产生引发的,随后自由基向 DNA 外壳转移,在那里发生底物的结合和周转。由于其通过精心设计的结构和协同功能模拟天然酶的能力,AuNP@DNA 被命名为冠酶。通过在 DNA 之外结合不同的纳米核和外壳材料,我们预计冠酶将代表通用的酶模拟物,能够在恶劣环境中进行多种反应。

相似文献

1
Amalgamation of DNAzymes and Nanozymes in a Coronazyme.DNA 酶和纳米酶的融合在冠酶中的应用。
J Am Chem Soc. 2023 Mar 15;145(10):5750-5758. doi: 10.1021/jacs.2c12367. Epub 2023 Feb 16.
7
Engineering Nanozymes Using DNA for Catalytic Regulation.利用 DNA 进行催化调控的工程纳米酶。
ACS Appl Mater Interfaces. 2019 Jan 16;11(2):1790-1799. doi: 10.1021/acsami.8b16075. Epub 2019 Jan 7.

引用本文的文献

1
Fluorogenic Linkage Integration for Nonfluorescent Transformations (FLINT).用于非荧光转化的荧光连接整合(FLINT)
Chem Biomed Imaging. 2025 Mar 3;3(4):253-259. doi: 10.1021/cbmi.4c00114. eCollection 2025 Apr 28.
3
Decoupling Activity and Specificity in Coronazymes.冠状病毒酶中活性与特异性的解偶联
Small. 2025 Apr;21(14):e2500783. doi: 10.1002/smll.202500783. Epub 2025 Mar 4.
5
DNA Catalysis: Design, Function, and Optimization.DNA 催化:设计、功能与优化。
Molecules. 2024 Oct 23;29(21):5011. doi: 10.3390/molecules29215011.

本文引用的文献

1
Mechanical Stability of DNA Corona Phase on Gold Nanospheres.金纳米球上 DNA 冠状相的机械稳定性。
Langmuir. 2022 Nov 8;38(44):13569-13576. doi: 10.1021/acs.langmuir.2c02251. Epub 2022 Oct 27.
5
Time-resolved structural analysis of an RNA-cleaving DNA catalyst.一种RNA切割DNA催化剂的时间分辨结构分析
Nature. 2022 Jan;601(7891):144-149. doi: 10.1038/s41586-021-04225-4. Epub 2021 Dec 23.
8
Nanozymes: From New Concepts, Mechanisms, and Standards to Applications.纳米酶:从新概念、机制和标准到应用。
Acc Chem Res. 2019 Aug 20;52(8):2190-2200. doi: 10.1021/acs.accounts.9b00140. Epub 2019 Jul 5.
10
Engineering Nanozymes Using DNA for Catalytic Regulation.利用 DNA 进行催化调控的工程纳米酶。
ACS Appl Mater Interfaces. 2019 Jan 16;11(2):1790-1799. doi: 10.1021/acsami.8b16075. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验