Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, Jiangsu, China.
J Am Chem Soc. 2023 Mar 15;145(10):5750-5758. doi: 10.1021/jacs.2c12367. Epub 2023 Feb 16.
Artificial enzymes such as nanozymes and DNAzymes are economical and stable alternatives to natural enzymes. By coating Au nanoparticles (AuNPs) with a DNA corona (AuNP@DNA), we amalgamated nanozymes and DNAzymes into a new artificial enzyme with catalytic efficiency 5 times higher than AuNP nanozymes, 10 times higher than other nanozymes, and significantly greater than most of the DNAzymes on the same oxidation reaction. The AuNP@DNA demonstrates excellent specificity as its reactivity on a reduction reaction does not change with respect to pristine AuNP. Single-molecule fluorescence and force spectroscopies and density functional theory (DFT) simulations indicate a long-range oxidation reaction initiated by radical production on the AuNP surface, followed by radical transport to the DNA corona, where the binding and turnover of substrates take place. The AuNP@DNA is named coronazyme because of its natural enzyme mimicking capability through the well-orchestrated structures and synergetic functions. By incorporating different nanocores and corona materials beyond DNAs, we anticipate that the coronazymes represent generic enzyme mimics to carry out versatile reactions in harsh environments.
人工酶,如纳米酶和脱氧核酶,是天然酶的经济且稳定的替代品。通过在金纳米颗粒 (AuNPs) 表面涂覆一层 DNA 外壳 (AuNP@DNA),我们将纳米酶和脱氧核酶结合成一种新型人工酶,其催化效率比 AuNP 纳米酶高 5 倍,比其他纳米酶高 10 倍,比大多数相同氧化反应的脱氧核酶高得多。AuNP@DNA 表现出优异的特异性,因为其在还原反应中的反应性相对于原始 AuNP 没有变化。单分子荧光和力谱以及密度泛函理论 (DFT) 模拟表明,氧化反应是由 AuNP 表面上自由基的产生引发的,随后自由基向 DNA 外壳转移,在那里发生底物的结合和周转。由于其通过精心设计的结构和协同功能模拟天然酶的能力,AuNP@DNA 被命名为冠酶。通过在 DNA 之外结合不同的纳米核和外壳材料,我们预计冠酶将代表通用的酶模拟物,能够在恶劣环境中进行多种反应。