Suppr超能文献

类菌落原细胞超结构。

Colony-like Protocell Superstructures.

机构信息

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.

Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.

出版信息

ACS Nano. 2023 Feb 28;17(4):3368-3382. doi: 10.1021/acsnano.2c08093. Epub 2023 Feb 16.

Abstract

We report the formation, growth, and dynamics of model protocell superstructures on solid surfaces, resembling single cell colonies. These structures, consisting of several layers of lipidic compartments enveloped in a dome-shaped outer lipid bilayer, emerged as a result of spontaneous shape transformation of lipid agglomerates deposited on thin film aluminum surfaces. Collective protocell structures were observed to be mechanically more stable compared to isolated spherical compartments. We show that the model colonies encapsulate DNA and accommodate nonenzymatic, strand displacement DNA reactions. The membrane envelope is able to disassemble and expose individual daughter protocells, which can migrate and attach via nanotethers to distant surface locations, while maintaining their encapsulated contents. Some colonies feature "exocompartments", which spontaneously extend out of the enveloping bilayer, internalize DNA, and merge again with the superstructure. A continuum elastohydrodynamic theory that we developed suggests that a plausible driving force behind subcompartment formation is attractive van der Waals (vdW) interactions between the membrane and surface. The balance between membrane bending and vdW interactions yields a critical length scale of 236 nm, above which the membrane invaginations can form subcompartments. The findings support our hypotheses that in extension of the "lipid world hypothesis", protocells may have existed in the form of colonies, potentially benefiting from the increased mechanical stability provided by a superstructure.

摘要

我们报告了在固体表面上形成、生长和动态变化的模型原细胞超结构,类似于单细胞菌落。这些结构由几层包裹在穹顶形外脂质双层中的脂质隔室组成,是由于沉积在薄膜铝表面上的脂质聚集体自发形状转变而产生的。与孤立的球形隔室相比,集体原细胞结构表现出更强的机械稳定性。我们表明,模型菌落可以封装 DNA,并容纳非酶促、链置换 DNA 反应。膜囊能够解体并暴露出单个的子原细胞,这些子原细胞可以通过纳米绳迁移并附着在远离表面的位置,同时保持其封装的内容物。一些菌落具有“外隔室”,它们可以自发地从包裹的双层中伸出,内化 DNA,并再次与超结构融合。我们开发的连续弹性流体动力学理论表明,膜和表面之间的吸引力范德华(vdW)相互作用是亚隔室形成的一个可能的驱动力。膜弯曲和 vdW 相互作用之间的平衡产生了一个临界长度尺度为 236nm,超过这个尺度,膜凹陷可以形成亚隔室。这些发现支持了我们的假设,即在“脂质世界假说”的扩展中,原细胞可能以菌落的形式存在,这可能受益于超结构提供的增加的机械稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72f2/9979656/dc7fdcf927d1/nn2c08093_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验