Lautenbacher Ludwig, Yang Kevin L, Kockmann Tobias, Panse Christian, Chambers Matthew, Kahl Elias, Yu Fengchao, Gabriel Wassim, Bold Dulguun, Schmidt Tobias, Li Kai, MacLean Brendan, Nesvizhskii Alexey I, Wilhelm Mathias
Computational Mass Spectrometry, Technical University of Munich (TUM), Freising, Germany.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
bioRxiv. 2024 Jun 3:2024.06.01.596953. doi: 10.1101/2024.06.01.596953.
Recent developments in machine-learning (ML) and deep-learning (DL) have immense potential for applications in proteomics, such as generating spectral libraries, improving peptide identification, and optimizing targeted acquisition modes. Although new ML/DL models for various applications and peptide properties are frequently published, the rate at which these models are adopted by the community is slow, which is mostly due to technical challenges. We believe that, for the community to make better use of state-of-the-art models, more attention should be spent on making models easy to use and accessible by the community. To facilitate this, we developed Koina, an open-source containerized, decentralized and online-accessible high-performance prediction service that enables ML/DL model usage in any pipeline. Using the widely used FragPipe computational platform as example, we show how Koina can be easily integrated with existing proteomics software tools and how these integrations improve data analysis.
机器学习(ML)和深度学习(DL)的最新进展在蛋白质组学应用中具有巨大潜力,例如生成光谱库、改进肽段鉴定以及优化靶向采集模式。尽管针对各种应用和肽段特性的新型ML/DL模型频繁发布,但这些模型被该领域采用的速度却很慢,这主要是由于技术挑战所致。我们认为,为了使该领域能够更好地利用最先进的模型,应更加注重使模型易于使用并为该领域所获取。为便于实现这一点,我们开发了Koina,这是一种开源的、容器化的、去中心化的且可在线访问的高性能预测服务,它能使ML/DL模型在任何流程中得以使用。以广泛使用的FragPipe计算平台为例,我们展示了Koina如何能够轻松地与现有的蛋白质组学软件工具集成,以及这些集成如何改进数据分析。