Kinsky Nathaniel R, Vöröslakos Mihály, Ruiz Jose Roberto Lopez, Watkins de Jong Laurel, Slager Nathan, McKenzie Sam, Yoon Euisik, Diba Kamran
Department of Anesthesiology and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
bioRxiv. 2023 Feb 6:2023.02.05.527184. doi: 10.1101/2023.02.05.527184.
Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of μLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using μLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the μLED probe, performing simultaneous optogenetics and electrophysiology , and post-processing of recorded data.
This method allows a researcher to simultaneously perturb neural activity and record electrophysiological signal from the same neurons with high spatial specificity using silicon probes with integrated μLEDs. We outline a procedure detailing all stages of the process for performing reliable μLED experiments in chronically implanted rodents.
光遗传学是一种强大的工具,用于测试神经回路如何影响神经活动、认知和行为。因此,在过去十年中,采用光遗传学扰动的研究数量呈指数增长。然而,最近的研究强调,光遗传学刺激/沉默的影响可能因所使用的构建体、局部微回路连接性、光照程度/强度以及受扰动的神经元类型而异。尽管存在这些注意事项,但大多数研究在使用光遗传学方法时并未同时记录被扰动回路中的神经活动。同时记录的神经数据的匮乏部分归因于将光遗传学与细胞外电生理学相结合的技术困难。最近推出的μLED硅探针,其特点是在硅探针多个柄的每个柄的多个层面嵌入了可独立控制的微型LED,为在时间和空间上精确询问神经回路提供了一种易于处理的方法。在这里,我们提供了一个协议,说明如何使用μLED探针进行慢性记录。该协议提供了一个用于对神经回路进行因果性和可重复性询问的示意图,并涵盖了记录过程的所有阶段:光遗传学构建体的引入、μLED探针的植入、同时进行光遗传学和电生理学实验以及记录数据的后处理。
该方法允许研究人员使用集成了μLED的硅探针,以高空间特异性同时扰动神经活动并记录来自同一神经元的电生理信号。我们概述了一个详细程序,说明了在长期植入的啮齿动物中进行可靠的μLED实验的过程的所有阶段。