Suppr超能文献

在生理频率下对皮质-皮质投射进行高保真光学激发。

High-fidelity optical excitation of cortico-cortical projections at physiological frequencies.

作者信息

Hass Charles A, Glickfeld Lindsey L

机构信息

Department of Neurobiology, Duke University, Durham, North Carolina.

Department of Neurobiology, Duke University, Durham, North Carolina

出版信息

J Neurophysiol. 2016 Nov 1;116(5):2056-2066. doi: 10.1152/jn.00456.2016. Epub 2016 Aug 3.

Abstract

Optogenetic activation of axons is a powerful approach for determining the synaptic properties and impact of long-range projections both in vivo and in vitro. However, because of the difficulty of measuring activity in axons, our knowledge of the reliability of optogenetic axonal stimulation has relied on data from somatic recordings. Yet, there are many reasons why activation of axons may not be comparable to cell bodies. Thus we have developed an approach to more directly assess the fidelity of optogenetic activation of axonal projections. We expressed opsins (ChR2, Chronos, or oChIEF) in the mouse primary visual cortex (V1) and recorded extracellular, pharmacologically isolated presynaptic action potentials in response to axonal activation in the higher visual areas. Repetitive stimulation of axons with ChR2 resulted in a 70% reduction in the fiber volley amplitude and a 60% increase in the latency at all frequencies tested (10-40 Hz). Thus ChR2 cannot reliably recruit axons during repetitive stimulation, even at frequencies that are reliable for somatic stimulation, likely due to pronounced channel inactivation at the high light powers required to evoke action potentials. By comparison, oChIEF and Chronos evoked photocurrents that inactivated minimally and could produce reliable axon stimulation at frequencies up to 60 Hz. Our approach provides a more direct and accurate evaluation of the efficacy of new optogenetic tools and has identified Chronos and oChIEF as viable tools to interrogate the synaptic and circuit function of long-range projections.

摘要

轴突的光遗传学激活是一种在体内和体外确定突触特性以及远距离投射影响的有力方法。然而,由于测量轴突活动存在困难,我们对光遗传学轴突刺激可靠性的了解一直依赖于体细胞记录的数据。然而,轴突激活可能与细胞体不可比,原因有很多。因此,我们开发了一种方法来更直接地评估轴突投射光遗传学激活的保真度。我们在小鼠初级视觉皮层(V1)中表达视蛋白(ChR2、Chronos或oChIEF),并记录在更高视觉区域中对轴突激活产生的细胞外、药理学分离的突触前动作电位。用ChR2对轴突进行重复刺激导致在所有测试频率(10 - 40Hz)下纤维群峰电位幅度降低70%,潜伏期增加60%。因此,即使在对体细胞刺激可靠的频率下,ChR2在重复刺激期间也不能可靠地募集轴突,这可能是由于在诱发动作电位所需的高光功率下通道明显失活所致。相比之下,oChIEF和Chronos诱发的光电流失活最小,并且在高达60Hz的频率下能够产生可靠的轴突刺激。我们的方法为新的光遗传学工具的功效提供了更直接和准确的评估,并已确定Chronos和oChIEF是用于研究远距离投射的突触和电路功能的可行工具。

相似文献

1
High-fidelity optical excitation of cortico-cortical projections at physiological frequencies.
J Neurophysiol. 2016 Nov 1;116(5):2056-2066. doi: 10.1152/jn.00456.2016. Epub 2016 Aug 3.
2
Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
J Neurosci. 2017 Nov 1;37(44):10679-10689. doi: 10.1523/JNEUROSCI.1246-17.2017. Epub 2017 Oct 2.
3
Role of electrical activity in horizontal axon growth in the developing cortex: a time-lapse study using optogenetic stimulation.
PLoS One. 2013 Dec 23;8(12):e82954. doi: 10.1371/journal.pone.0082954. eCollection 2013.
4
Achieving high-frequency optical control of synaptic transmission.
J Neurosci. 2014 May 28;34(22):7704-14. doi: 10.1523/JNEUROSCI.4694-13.2014.
5
Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
Hear Res. 2015 Apr;322:235-41. doi: 10.1016/j.heares.2015.01.004. Epub 2015 Jan 15.
6
Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
Methods Mol Biol. 2020;2173:1-20. doi: 10.1007/978-1-0716-0755-8_1.
7
Repetitive and retinotopically restricted activation of the dorsal lateral geniculate nucleus with optogenetics.
PLoS One. 2014 Apr 11;9(4):e94633. doi: 10.1371/journal.pone.0094633. eCollection 2014.
8
Optogenetic entrainment of neural oscillations with hybrid fiber probes.
J Neural Eng. 2018 Oct;15(5):056006. doi: 10.1088/1741-2552/aacdb9. Epub 2018 Jun 20.
9
Delivery of continuously-varying stimuli using channelrhodopsin-2.
Front Neural Circuits. 2013 Dec 6;7:184. doi: 10.3389/fncir.2013.00184. eCollection 2013.
10
An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
Commun Biol. 2021 Apr 12;4(1):461. doi: 10.1038/s42003-021-01977-7.

引用本文的文献

2
Optogenetic approaches for neural tissue regeneration: A review of basic optogenetic principles and target cells for therapy.
Neural Regen Res. 2026 Feb 1;21(2):521-533. doi: 10.4103/NRR.NRR-D-24-00685. Epub 2025 Feb 24.
3
Synaptic Engram.
Adv Neurobiol. 2024;38:131-145. doi: 10.1007/978-3-031-62983-9_8.
4
Impact of volume and expression time in an AAV-delivered channelrhodopsin.
Mol Brain. 2023 Nov 10;16(1):77. doi: 10.1186/s13041-023-01067-1.
7
High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.
Neuron. 2022 Apr 6;110(7):1139-1155.e6. doi: 10.1016/j.neuron.2022.01.008. Epub 2022 Feb 3.
8
Short-Term Facilitation of Long-Range Corticocortical Synapses Revealed by Selective Optical Stimulation.
Cereb Cortex. 2022 Apr 20;32(9):1932-1949. doi: 10.1093/cercor/bhab325.
9
The Effect of Serotonin Receptor 5-HT1B on Lateral Inhibition between Spiny Projection Neurons in the Mouse Striatum.
J Neurosci. 2021 Sep 15;41(37):7831-7847. doi: 10.1523/JNEUROSCI.1037-20.2021. Epub 2021 Aug 4.
10
Prefrontal Cortex-Driven Dopamine Signals in the Striatum Show Unique Spatial and Pharmacological Properties.
J Neurosci. 2020 Sep 23;40(39):7510-7522. doi: 10.1523/JNEUROSCI.1327-20.2020. Epub 2020 Aug 28.

本文引用的文献

1
Laminar- and Target-Specific Amygdalar Inputs in Rat Primary Gustatory Cortex.
J Neurosci. 2016 Mar 2;36(9):2623-37. doi: 10.1523/JNEUROSCI.3224-15.2016.
2
Projections from neocortex mediate top-down control of memory retrieval.
Nature. 2015 Oct 29;526(7575):653-9. doi: 10.1038/nature15389. Epub 2015 Oct 5.
4
Novel method to assess axonal excitability using channelrhodopsin-based photoactivation.
J Neurophysiol. 2015 Apr 1;113(7):2242-9. doi: 10.1152/jn.00982.2014. Epub 2015 Jan 21.
5
Achieving high-frequency optical control of synaptic transmission.
J Neurosci. 2014 May 28;34(22):7704-14. doi: 10.1523/JNEUROSCI.4694-13.2014.
6
Independent optical excitation of distinct neural populations.
Nat Methods. 2014 Mar;11(3):338-46. doi: 10.1038/nmeth.2836. Epub 2014 Feb 9.
7
Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination.
Nature. 2013 May 23;497(7450):482-5. doi: 10.1038/nature12077. Epub 2013 May 1.
8
The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials.
J Comput Neurosci. 2013 Jun;34(3):477-88. doi: 10.1007/s10827-012-0431-7. Epub 2012 Nov 22.
9
Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ.
J Neurosci. 2012 Sep 5;32(36):12437-43. doi: 10.1523/JNEUROSCI.0706-12.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验