Suppr超能文献

一种用于病灶合成和增强肝脏肿瘤分割的部分卷积生成对抗网络。

A partial convolution generative adversarial network for lesion synthesis and enhanced liver tumor segmentation.

机构信息

Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China.

Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida, USA.

出版信息

J Appl Clin Med Phys. 2023 Apr;24(4):e13927. doi: 10.1002/acm2.13927. Epub 2023 Feb 17.

Abstract

Lesion segmentation is critical for clinicians to accurately stage the disease and determine treatment strategy. Deep learning based automatic segmentation can improve both the segmentation efficiency and accuracy. However, training a robust deep learning segmentation model requires sufficient training examples with sufficient diversity in lesion location and lesion size. This study is to develop a deep learning framework for generation of synthetic lesions with various locations and sizes that can be included in the training dataset to enhance the lesion segmentation performance. The lesion synthesis network is a modified generative adversarial network (GAN). Specifically, we innovated a partial convolution strategy to construct a U-Net-like generator. The discriminator is designed using Wasserstein GAN with gradient penalty and spectral normalization. A mask generation method based on principal component analysis (PCA) was developed to model various lesion shapes. The generated masks are then converted into liver lesions through a lesion synthesis network. The lesion synthesis framework was evaluated for lesion textures, and the synthetic lesions were used to train a lesion segmentation network to further validate the effectiveness of the lesion synthesis framework. All the networks are trained and tested on the LITS public dataset. Our experiments demonstrate that the synthetic lesions generated by our approach have very similar distributions for the two parameters, GLCM-energy and GLCM-correlation. Including the synthetic lesions in the segmentation network improved the segmentation dice performance from 67.3% to 71.4%. Meanwhile, the precision and sensitivity for lesion segmentation were improved from 74.6% to 76.0% and 66.1% to 70.9%, respectively. The proposed lesion synthesis approach outperforms the other two existing approaches. Including the synthetic lesion data into the training dataset significantly improves the segmentation performance.

摘要

病变分割对于临床医生准确分期疾病和确定治疗策略至关重要。基于深度学习的自动分割可以提高分割效率和准确性。然而,训练一个强大的深度学习分割模型需要具有足够多样性的病变位置和病变大小的充足训练示例。本研究旨在开发一种用于生成具有各种位置和大小的合成病变的深度学习框架,这些病变可以包含在训练数据集中,以提高病变分割性能。病变合成网络是一种修改后的生成对抗网络(GAN)。具体来说,我们创新了一种部分卷积策略来构建 U-Net 样生成器。鉴别器使用带有梯度惩罚和谱归一化的 Wasserstein GAN 设计。开发了一种基于主成分分析(PCA)的掩模生成方法来模拟各种病变形状。然后通过病变合成网络将生成的掩模转换为肝病变。评估了病变合成框架的病变纹理,并使用合成病变来训练病变分割网络,以进一步验证病变合成框架的有效性。所有网络都在 LITS 公共数据集上进行训练和测试。我们的实验表明,我们的方法生成的合成病变在 GLCM-能量和 GLCM-相关性这两个参数上具有非常相似的分布。将合成病变纳入分割网络可将分割 Dice 性能从 67.3%提高到 71.4%。同时,病变分割的精度和敏感度分别从 74.6%提高到 76.0%和从 66.1%提高到 70.9%。提出的病变合成方法优于其他两种现有的方法。将合成病变数据纳入训练数据集可显著提高分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0b/10113707/1c45bffa6cb2/ACM2-24-e13927-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验