Suppr超能文献

基于深度学习的 RNA 二级结构预测的 RNA 无依赖片段划分方法。

RNA independent fragment partition method based on deep learning for RNA secondary structure prediction.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, Liaoning, China.

College of Light Industry, Liaoning University, Shenyang, 110036, Liaoning, China.

出版信息

Sci Rep. 2023 Feb 17;13(1):2861. doi: 10.1038/s41598-023-30124-x.

Abstract

The non-coding RNA secondary structure largely determines its function. Hence, accuracy in structure acquisition is of great importance. Currently, this acquisition primarily relies on various computational methods. The prediction of the structures of long RNA sequences with high precision and reasonable computational cost remains challenging. Here, we propose a deep learning model, RNA-par, which could partition an RNA sequence into several independent fragments (i-fragments) based on its exterior loops. Each i-fragment secondary structure predicted individually could be further assembled to acquire the complete RNA secondary structure. In the examination of our independent test set, the average length of the predicted i-fragments was 453 nt, which was considerably shorter than that of complete RNA sequences (848 nt). The accuracy of the assembled structures was higher than that of the structures predicted directly using the state-of-the-art RNA secondary structure prediction methods. This proposed model could serve as a preprocessing step for RNA secondary structure prediction for enhancing the predictive performance (especially for long RNA sequences) and reducing the computational cost. In the future, predicting the secondary structure of long-sequence RNA with high accuracy can be enabled by developing a framework combining RNA-par with various existing RNA secondary structure prediction algorithms. Our models, test codes and test data are provided at https://github.com/mianfei71/RNAPar .

摘要

非编码 RNA 的二级结构在很大程度上决定了其功能。因此,结构获取的准确性非常重要。目前,这种获取主要依赖于各种计算方法。高精度和合理计算成本地预测具有长 RNA 序列的结构仍然具有挑战性。在这里,我们提出了一个深度学习模型 RNA-par,它可以根据 RNA 序列的外部环将其划分为几个独立的片段(i-fragment)。每个单独预测的 i-fragment 二级结构可以进一步组装以获得完整的 RNA 二级结构。在我们独立测试集的检查中,预测的 i-fragment 的平均长度为 453nt,明显短于完整 RNA 序列(848nt)。组装结构的准确性高于使用最先进的 RNA 二级结构预测方法直接预测的结构。该模型可作为 RNA 二级结构预测的预处理步骤,以提高预测性能(特别是对于长 RNA 序列)和降低计算成本。未来,可以通过开发结合 RNA-par 和各种现有的 RNA 二级结构预测算法的框架,实现高精度预测长序列 RNA 的二级结构。我们的模型、测试代码和测试数据可在 https://github.com/mianfei71/RNAPar 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d7a/9938198/dd4075794755/41598_2023_30124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验