Gnyawali Kaushal, Dahal Kshitij, Talchabhadel Rocky, Nirandjan Sadhana
School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada; Natural Hazards Section, Himalayan Risk Research Institute, Bhaktapur, Nepal.
Natural Hazards Section, Himalayan Risk Research Institute, Bhaktapur, Nepal.
Sci Total Environ. 2023 May 10;872:162242. doi: 10.1016/j.scitotenv.2023.162242. Epub 2023 Feb 15.
Rainfall-induced landslides cause frequent disruptions to critical infrastructure in mountainous countries. Climate change is altering rainfall patterns and localizing extreme rainfall events, increasing the occurrence of landslides. For planning climate-resilient critical infrastructure in landslide-prone regions, it is urgent to understand the changing landslide susceptibility in relation to changing rainfall extremes and spatially overlay them with critical infrastructure to determine risk zones. As such, areas requiring financial reinforcements can be prioritized. In this paper, we develop a framework linking changing rainfall extremes to landslide susceptibility and intensity of critical infrastructure - exemplified on a national scale using Nepal as a case study. First, we define a set of 21 different unique rainfall indices that describe extreme and localized rainfall. Second, we prepare a new annual (2016-2020) inventory of 107,900 landslides in Nepal mapped on PlanetScope satellite imagery. Next, we prepare a landslide susceptibility map by training a random forest model using the collected extreme rainfall indices and landslide locations in combination with spatial data on topography. Fourth, we construct a gridded critical infrastructure spatial density map that quantifies the intensity of infrastructure (i.e., transportation, energy, telecommunication, waste, water, health, and education) at each grid location using OpenStreetMap. The landslide susceptibility map classified Nepal's topography into low (36 %), medium (33 %), and (32 %) high rainfall-triggered landslide susceptibility zones. The landslide susceptibility map had an average area under the receiver characteristic curve value of 0.94. Finally, we overlay the landslide susceptibility map with the critical infrastructure intensity to identify areas needing financial reinforcement. Our framework reasonably mapped critical infrastructure hotspots in Nepal prone to landslides on a 1 km grid. The hotspots are mainly concentrated along major national highways and in provinces 4, 3, and 1, highlighting the need for improved land management practices. These hotspots need spatial prioritization regarding climate-resilient critical infrastructure financing and slope conservation policies. The research data, output maps, and code are publicly released via an ArcGIS WebApp and GitHub repository. The framework is scalable and can be used for developing infrastructure financing strategies for landslide mountain regions and countries.
降雨引发的山体滑坡频繁破坏山区国家的关键基础设施。气候变化正在改变降雨模式并使极端降雨事件局部化,从而增加山体滑坡的发生频率。为了在易发生山体滑坡的地区规划具有气候适应能力的关键基础设施,迫切需要了解与不断变化的极端降雨相关的山体滑坡易发性变化,并将其与关键基础设施进行空间叠加以确定风险区域。这样一来,就可以优先确定需要资金支持的地区。在本文中,我们开发了一个框架,将不断变化的极端降雨与山体滑坡易发性以及关键基础设施的强度联系起来——以尼泊尔为例在国家层面进行了例证。首先,我们定义了一组21个不同的独特降雨指数,用于描述极端降雨和局部降雨。其次,我们编制了一份新的年度(2016 - 2020年)尼泊尔山体滑坡清单,这些山体滑坡是根据PlanetScope卫星图像绘制的,共有107,900处。接下来,我们通过使用收集到的极端降雨指数和山体滑坡位置并结合地形空间数据训练随机森林模型,编制了一份山体滑坡易发性地图。第四,我们构建了一个网格化的关键基础设施空间密度地图,使用OpenStreetMap量化每个网格位置的基础设施强度(即交通、能源、电信、废物处理、水、卫生和教育)。山体滑坡易发性地图将尼泊尔的地形分为低(36%)、中(33%)和高(32%)降雨引发的山体滑坡易发性区域。山体滑坡易发性地图的平均接收者操作特征曲线下面积值为0.94。最后,我们将山体滑坡易发性地图与关键基础设施强度叠加,以确定需要资金支持的区域。我们的框架合理地绘制了尼泊尔1公里网格上易发生山体滑坡的关键基础设施热点地区。这些热点主要集中在主要国道沿线以及第4、3和1省份,凸显了改进土地管理做法的必要性。这些热点地区在气候适应型关键基础设施融资和边坡保护政策方面需要进行空间优先排序。研究数据、输出地图和代码通过ArcGIS Web应用程序和GitHub存储库公开发布。该框架具有可扩展性,可用于为山体滑坡多发的山区和国家制定基础设施融资策略。