Suppr超能文献

ROMI:一种随机两阶段篮子试验设计,旨在优化多种适应症的剂量。

ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.

Astellas Pharma Global Development Inc., Northbrook, IL 60062, United States.

出版信息

Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae105.

Abstract

Optimizing doses for multiple indications is challenging. The pooled approach of finding a single optimal biological dose (OBD) for all indications ignores that dose-response or dose-toxicity curves may differ between indications, resulting in varying OBDs. Conversely, indication-specific dose optimization often requires a large sample size. To address this challenge, we propose a Randomized two-stage basket trial design that Optimizes doses in Multiple Indications (ROMI). In stage 1, for each indication, response and toxicity are evaluated for a high dose, which may be a previously obtained maximum tolerated dose, with a rule that stops accrual to indications where the high dose is unsafe or ineffective. Indications not terminated proceed to stage 2, where patients are randomized between the high dose and a specified lower dose. A latent-cluster Bayesian hierarchical model is employed to borrow information between indications, while considering the potential heterogeneity of OBD across indications. Indication-specific utilities are used to quantify response-toxicity trade-offs. At the end of stage 2, for each indication with at least one acceptable dose, the dose with highest posterior mean utility is selected as optimal. Two versions of ROMI are presented, one using only stage 2 data for dose optimization and the other optimizing doses using data from both stages. Simulations show that both versions have desirable operating characteristics compared to designs that either ignore indications or optimize dose independently for each indication.

摘要

优化多种适应证的剂量具有挑战性。为所有适应证寻找单一最佳生物学剂量 (OBD) 的汇总方法忽略了剂量-反应或剂量-毒性曲线可能因适应证而异,从而导致不同的 OBD。相反,适应证特异性剂量优化通常需要大量样本量。为了解决这一挑战,我们提出了一种随机两阶段篮式试验设计,即多适应证剂量优化 (ROMI)。在第 1 阶段,对于每个适应证,高剂量的反应和毒性进行评估,高剂量可能是之前获得的最大耐受剂量,有一个规则是停止入组高剂量不安全或无效的适应证。未终止的适应证进入第 2 阶段,在高剂量和特定低剂量之间对患者进行随机分组。采用潜在聚类贝叶斯层次模型在适应证之间进行信息借用,同时考虑 OBD 在适应证之间的潜在异质性。使用适应证特异性效用来量化反应-毒性权衡。在第 2 阶段结束时,对于至少有一个可接受剂量的每个适应证,选择具有最高后验均值效用的剂量作为最佳剂量。提出了两种版本的 ROMI,一种仅使用第 2 阶段的数据进行剂量优化,另一种使用两个阶段的数据进行剂量优化。模拟结果表明,与忽略适应证或为每个适应证独立优化剂量的设计相比,这两种版本都具有理想的操作特性。

相似文献

本文引用的文献

8
The Drug-Dosing Conundrum in Oncology - When Less Is More.肿瘤学中的给药难题——少即是多。
N Engl J Med. 2021 Oct 14;385(16):1445-1447. doi: 10.1056/NEJMp2109826. Epub 2021 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验