Suppr超能文献

在 380°C 以上通过界面疏锂性/亲锂性转变机制将锂金属与石榴石电解质键合。

Bonding Lithium Metal with Garnet Electrolyte by Interfacial Lithiophobicity/Lithiophilicity Transition Mechanism over 380 °C.

机构信息

Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China.

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China.

出版信息

Small Methods. 2023 Apr;7(4):e2201140. doi: 10.1002/smtd.202201140. Epub 2023 Feb 17.

Abstract

Garnet electrolytes, possessing high ionic conductivity (10 -10 S cm at room temperature) and excellent chemical/electrochemical compatibility with lithium metal, are expected to be used in solid-state lithium metal batteries. However, the poor solid-solid interfacial contact between lithium and garnet leads to high interfacial resistance, reducing the battery power capability and cyclability. Garnet electrolytes are commonly believed to be intrinsically lithiophilic, and lithiophobic Li CO on the garnet surface accounted for the poor interfacial contact. Here, it is proposed that the interfacial lithiophobicity/lithiophilicity of garnets (LLZO, LLZTO) can be transformed above a temperature of ≈380 °C. This transition mechanism is also suitable for other materials such as Li CO , Li O, stainless steel, and Al O . By using this transition mechanism, uniform and even lithium can be strongly bonded no-surface-treated garnet electrolytes with various shapes. The Li-LLZTO interfacial resistance can be reduced to ≈3.6 Ω cm and sustainably withstood lithium extraction and insertion for up to 2000 h at 100 µA cm . This high-temperature lithiophobicity/lithiophilicity transition mechanism can help improve the understanding of lithium-garnet interfaces and build practical lithium-garnet solid-solid interfaces.

摘要

石榴石电解质具有高离子电导率(室温下为 10-10 S cm)和与锂金属优异的化学/电化学相容性,有望用于固态锂金属电池。然而,锂与石榴石之间较差的固-固界面接触导致了高界面电阻,降低了电池的功率能力和循环寿命。石榴石电解质通常被认为是固有亲锂的,而石榴石表面疏锂的 LiCO 导致了较差的界面接触。在这里,提出石榴石(LLZO、LLZTO)的界面疏锂性/亲锂性可以在 ≈380°C 以上的温度下转变。这种转变机制也适用于其他材料,如 LiCO、LiO、不锈钢和 AlO。通过利用这种转变机制,可以在无需表面处理的情况下,将各种形状的均匀且均匀的锂与石榴石电解质牢固地结合在一起。Li-LLZTO 界面电阻可以降低到 ≈3.6 Ω cm,并在 100 µA cm 下可持续承受长达 2000 h 的锂提取和插入。这种高温疏锂性/亲锂性转变机制有助于提高对锂-石榴石界面的理解,并构建实用的锂-石榴石固-固界面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验