Castro-Domínguez Cristina, Lozano-Picazo Paloma, Álvarez-López Aroa, Garrote-Junco Javier, Panetsos Fivos, Guinea Gustavo V, Elices Manuel, Rojo Francisco Javier, González-Nieto Daniel, Colchero Luis, Ramos Milagros, Pérez-Rigueiro José
Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain.
Biomimetics (Basel). 2023 Feb 4;8(1):65. doi: 10.3390/biomimetics8010065.
After an injury, the limited regenerative capacity of the central nervous system makes the reconnection and functional recovery of the affected nervous tissue almost impossible. To address this problem, biomaterials appear as a promising option for the design of scaffolds that promote and guide this regenerative process. Based on previous seminal works on the ability of regenerated silk fibroin fibers spun through the straining flow spinning (SFS) technique, this study is intended to show that the usage of functionalized SFS fibers allows an enhancement of the guidance ability of the material when compared with the control (nonfunctionalized) fibers. It is shown that the axons of the neurons not only tend to follow the path marked by the fibers, in contrast to the isotropic growth observed on conventional culture plates, but also that this guidance can be further modulated through the biofunctionalization of the material with adhesion peptides. Establishing the guidance ability of these fibers opens the possibility of their use as implants for spinal cord injuries, so that they may represent the core of a therapy that would allow the reconnection of the injured ends of the spinal cord.
受伤后,中枢神经系统有限的再生能力使得受损神经组织的重新连接和功能恢复几乎不可能实现。为了解决这个问题,生物材料作为一种有前景的选择,可用于设计促进和引导这种再生过程的支架。基于先前关于通过应变流纺丝(SFS)技术纺制的再生丝素蛋白纤维能力的开创性研究,本研究旨在表明,与对照(未功能化)纤维相比,功能化SFS纤维的使用能够增强材料的引导能力。结果表明,与传统培养板上观察到的各向同性生长相反,神经元的轴突不仅倾向于沿着纤维标记的路径生长,而且这种引导可以通过用粘附肽对材料进行生物功能化进一步调节。确定这些纤维的引导能力为其作为脊髓损伤植入物的应用开辟了可能性,因此它们可能代表一种能够实现脊髓损伤末端重新连接的治疗方法的核心。