Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
PLoS One. 2023 Feb 22;18(2):e0280831. doi: 10.1371/journal.pone.0280831. eCollection 2023.
Mortality prediction is critical on long-term kidney replacement therapy (KRT), both for individual treatment decisions and resource planning. Many mortality prediction models already exist, but as a major shortcoming most of them have only been validated internally. This leaves reliability and usefulness of these models in other KRT populations, especially foreign, unknown. Previously two models were constructed for one- and two-year mortality prediction of Finnish patients starting long-term dialysis. These models are here internationally validated in KRT populations of the Dutch NECOSAD Study and the UK Renal Registry (UKRR).
We validated the models externally on 2051 NECOSAD patients and on two UKRR patient cohorts (5328 and 45493 patients). We performed multiple imputation for missing data, used c-statistic (AUC) to assess discrimination, and evaluated calibration by plotting average estimated probability of death against observed risk of death.
Both prediction models performed well in the NECOSAD population (AUC 0.79 for the one-year model and 0.78 for the two-year model). In the UKRR populations, performance was slightly weaker (AUCs: 0.73 and 0.74). These are to be compared to the earlier external validation in a Finnish cohort (AUCs: 0.77 and 0.74). In all tested populations, our models performed better for PD than HD patients. Level of death risk (i.e., calibration) was well estimated by the one-year model in all cohorts but was somewhat overestimated by the two-year model.
Our prediction models showed good performance not only in the Finnish but in foreign KRT populations as well. Compared to the other existing models, the current models have equal or better performance and fewer variables, thus increasing models' usability. The models are easily accessible on the web. These results encourage implementing the models into clinical decision-making widely among European KRT populations.
死亡率预测对于长期肾脏替代治疗(KRT)至关重要,无论是对个体治疗决策还是资源规划而言。目前已经存在许多死亡率预测模型,但作为一个主要的缺点,大多数模型仅在内部得到验证。这使得这些模型在其他 KRT 人群中的可靠性和实用性,尤其是在国外的人群中,仍然未知。之前已经构建了两个模型,用于预测开始长期透析的芬兰患者的一年和两年死亡率。这些模型在此处通过荷兰 NECOSAD 研究和英国肾脏登记处(UKRR)的 KRT 人群进行了国际验证。
我们对 2051 名 NECOSAD 患者和两个 UKRR 患者队列(5328 名和 45493 名患者)进行了外部验证。我们对缺失数据进行了多重插补,使用 C 统计量(AUC)评估区分度,并通过绘制平均估计死亡率与观察到的死亡率风险来评估校准。
两个预测模型在 NECOSAD 人群中表现良好(一年模型的 AUC 为 0.79,两年模型的 AUC 为 0.78)。在 UKRR 人群中,表现稍弱(AUC 分别为 0.73 和 0.74)。这与之前在芬兰队列中的外部验证结果(AUC 分别为 0.77 和 0.74)进行了比较。在所有测试的人群中,我们的模型在 PD 患者中的表现优于 HD 患者。在所有队列中,一年模型都很好地估计了死亡风险水平(即校准),但两年模型的校准有些高估。
我们的预测模型不仅在芬兰人群中,而且在国外的 KRT 人群中也表现出良好的性能。与其他现有模型相比,当前模型具有相同或更好的性能,且变量更少,从而提高了模型的可用性。这些模型可以在网上轻松获取。这些结果鼓励在欧洲 KRT 人群中广泛应用这些模型来进行临床决策。