Průša Jiří, Cifra Michal
Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague 18200, Czechia.
Comput Struct Biotechnol J. 2023 Jan 21;21:1349-1361. doi: 10.1016/j.csbj.2023.01.018. eCollection 2023.
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the -tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
驱动蛋白是一种在细胞功能中必不可少的运动蛋白,如细胞内运输和细胞分裂,在生物纳米技术中也用于实现纳米级运输。因此,为了有效控制纳米技术应用中的功能,能够改变驱动蛋白的功能很重要。为了克服化学修饰的局限性,我们在此确定了另一种控制驱动蛋白的潜在方法:利用电场。通过全原子分子动力学模拟(247358个原子,总时长约4.4微秒),我们首次证明,在纳秒时间尺度内,强电场可使驱动蛋白-1运动结构域与微管分离。我们表明,这种效应与场方向和场强有关。对作用于微管-驱动蛋白系统的电场力和电场所做的功进行详细分析表明,是电场对β-微管蛋白C末端的拉力以及电场对驱动蛋白偶极矩产生的扭矩的共同作用导致驱动蛋白从微管上脱离。首次以一种机制性的方式表明,电场可显著影响异源功能蛋白组装中的分子相互作用。我们的结果有助于在分子水平上理解电磁场与生物物质的相互作用,在控制蛋白质纳米马达方面具有潜在的生物医学和生物纳米技术应用价值。